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ABSTRACT

The pitch motion of a satellite in c¢ircular orbit can be described

by the normalized differential equation
X (t) + sin x(t) = u(t)

whenever a principal axis of the satellite remains normal to the orbit
piane. The controlling torque u(t) is bounded ([u(t)| <A), and
x(t) is twice the pitch coordinate. Our goal is to find that control
u(t) which zeros the pitch error and error rate within a prescribed
fixed time t ¢ Wwhile minimizing the fuel expended (szf [u(t)|dt). The
condition that the bound A of the control be greater zhan one is
essential for the results obtained.

A time varying feedback control law u(x(t), x(t),t) is derived
by examining the backward time pseudoextremals of Pontryagin's Maximum
Principle emanating from the origin and eliminating all candidates
except one for each initial disturbance (x(to),i(to)) and fixed times
tf. With the existence of an optimal controller guaranteed by a separate
argument, our derived control law is both optimsl and unique.

The fuel optimal control u(t) is a piecewise constant function
of time which can attain only the values +A, 0, and -A. For fTinite
times of solution +

27 the backwards time trajectories approach is

then justified. Singular solutions are not optimal.
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The most important facts encountered are

1) For tf < n only one switching may occur in the pathological

minimum time solution.

2) TFor tf < n/2 + arcsinh 1 at most two switchings may occur in any

control sequence containing both the values +A and -A.

5) In contragst to the linear problem, the control sequences
(+A,0,+4,0,...) or (-A,0,-A;0,...) are optimal for appropriate

initiagl disturbances.

4) Only pseudoextremals with a vanishing Hamiltonian may arrive at the
origin earlier than the specified time of solution tf and still

be fuel optimal for that specific time tf-
The solution is then applied to solve the actual earth-pointing
satellite problem where one now desires to zero the pitch rgte while

driving the pitch coordinate in time +t_. to that integral multiple of

f
2x which is most economical of fuel. Time varying indifference curves,
defined by the locus of those states (x,X) which may be driven to
(4kn,0) or (4(k+1l)x,0) in time t, with identical fuel expenditure,
then subdivide the state space into periodic segments. The pitch
coordinate of any state within one such segment is driven to the same
multiple of 2m.

The results of this nonlinear analysié are compared to the solution

of the linearized problem. An efficient suboptimal control design is

proposed and its performance 1s evaluated.
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INTRODUCTION

The problem of designing an attitude control system to maintain the
orientation of a communication satellite so that its antenns points earth-
ward is of great practical interest. 1In order to evaluate the merit of a
proposed design, one first must estgblish some oversll performance cri-
terion for the system. The selection of which factors to include in such
a criterion is in 1tself g difficult value judgment. However; upon
agreeing on a performgnce criterion, it would be useful to determine the
optimal control policy and thereby the optimal performance for the system.

The results of such aﬁ optimal control study are of importagnce to the
designer for two regsons. Firstly, it may be possible to implement the
optimal control strategy directly. If such an implementation is unfeasi-
ble, the study would indicate how an efficient suboptimsl control scheme
might be devised. Secondly, it would establish an optimal performance
index by which to gauge the effectiveness of a proposed desigh.

The dynamical system to be controlled consists of six state vari-
ables which completely describe the motion of the satellite; namely,
the coordinates of the mass center gnd the Euler angles. The evolutidn
in time of these states is governed by a strongly coupled system of non-
linear differential equations. Finding a complete feedback fuel optimal
control law for the most general satellite motion would involve near
insurmountable technical difficulties. Instead this study is a thorough
treatment of the full nonlinear equations for a particular satellite

motion; namely, the attitude motions of a satellite in circular orbit



when one principal axis remains normsl to the orbital plane. This
motion is Lyapunov stable and an gpproximate solution for more general
- motions for sufficiently small roll and yaw errors and error rates.

The method proposed for providing the control torques is the use
of cold gas reaction jets. Such a system is very reliable in a full
thrust or zero thrust operation. The so called minimum effort perfor-
mance criterion was chosen because it corresponds directly to minimizing
the amount of gas expended in executing the desired earthpointing
mgneuver. Inasmuch as only a limited amount of fuel is available for
such maneuvers once the satellite is in orbit, such a performance measure
is most abpropriate. The fact that the optimal control policy for this
problem is indeed of the bang-coast or full thrust, zero thrust type
further supports the proposal for cold reaction jet controllers.

Since the satellite may spin as well as oscillate, the pitch angle
does not remain small. Design studies based on linear analysis may lead
to grossly erroneous conclusions. In Chapter V the results of this non-
linear investigation are compared to those obtained from an optimal
linearized solution to indicate the caution that must be used in extending
conclusions based on a linear model into regions where such a model is
no longer vglid.

Pontryagin's Maximum.?rinciple is the basic tool employed in this
investigation. With the differential equations describing the satellite
dynamics at hand, the Maximum Principle provides candidateé for the

optimal control as a function of the adjoint varigbles. At this point



the difficulty posed by the nonlinegrity becomes most pronounced. For
linearized dynamics the adjoint system of differential equations is
decoupled from the dynamics system. In this event one may in prinCiple
determine the optimal control as a function of time, once one solves the
most difficult task of determining appropriate initial conditions for the
adjoint variables corresponding to the particular satellite state to be
corrected. However, in the nonlinear problem the coupling between the
control, state, and adjoint variables is complete. The optimal control
depends on the adjoint variables which depend upon the state variables
which in turn depend upon the control history.

The goal of this study is to exhibit the fuel optimal control law
in the form of a feedback control law. In this form the effects of
outside disturbances occurring during the reorientation maneuver are
minimized. Actually the feedback control law is time dependent as the
time remgining for completing the mission is an essential parameter.

The realization of such a time dependent bang-coast control law depends
upon the determination of switching surfaces in the cartesian product
space X X t where the time t as well as the state variables X is
a coordingte.

For the actual earthpointing satellite problem the number of summer-
saults through which the satellite has tumbled is of little consequence.
The solution for zeroing the pitch error and error rate is then applied
to the real satellite problem where one now desires to zero the pitch
error rate while driving the pitch coordinate in time t to that

£

integral multiple 2Kx which is most economicgl of fuel. Time varying



indifference curves, defined by the locus of those states in the plane
(x,%) which may be driven to (2Kn,0) or (2(K+l)x,0) in time t
with identical fuel expenditure, then subdivide the state space into
periodic segments. The pitch coordinate of all states within each

segment at time t are driven to the same multiple 2Kx.



CHAPTER T

THE SYSTEM - A system consists of a plant or process to be controlled
and a means for providing g control input. The dynamical behgvior of

our plant is governed by the differential equation:
x(t) + sin x(t) = u (1-1)

where dots denote differentiation with respect to time t and u is

the control input. Let

xl(t) x(t)

(1-2)

xg(t) x(t)

Then the state variables xl(t) and xz(t) are the solutions of the

differential equations

x,(t) = xg(t) (13)
ig(t) = u(t) - sin xl(t)
The scalar control function wu(t) shall satisfy the conditions: _
i) u(t) is a piecewise continuous function of time (1-4)
i1) u(t) is bounded; that is |u(t)] <A for all te(-w,+w)
(1-5)

where A 1is g fixed number greater than one.

THE CONTROL PROBLEM - For the plant described by equations (1-3), we

seek a control wu(t) satisfying (1-4%) and (1-5) which transfers the



system from some known initial statev.(xl(to),xz(to)) to the terminal

state (xl(tf),xg(tf)) = (0,0) within a specified time T = ot

Since equations (1-3) are stationary, i.e. invariant under change of

time reference, to may be chosen to be zero. Therefore the boundary

conditions may be written as

(x,(0),%,(0)) = (x;,%,,)
(1-6)
(0,0)

(32, (7 2,(T))

DEFINITION 1-1 Any control wu(t) satisfying conditions (1-5), (1-6),

and (l—7)'shall be designated an admissible control. In other words
any piecewise continuous function of time whose absolute value is
bounded by a given number A, which drives the system from some pre-
scribed initial state (XlO’XQO) to the origin of state space within
a prescribed time T is an admissible control for the given boundary

conditions.

THE OPTIMAL CONTROL PROBLEM One frequently desires that the control

optimize the system performance in a particular sense while meeting
the objectives of the control problem; namely, minimize s performance
index while transfering the phase point (xl(t),xg(t)) to the origin
within a prescribed time. For the present case, the criterion to be

used in evalusting system performance is

J = ];T [u(t)|at (1-7)



~ the so called minimum effort criterion. We may introduce an auxiliary

state xo(t) satisfying

k(1) = lu(s)] (1-8)

with initial condition xO(O) = 0 to measure the effort or fuel

expended along a trajectory. The optimal control problem then is to
minimize the final value of this auxiliary state variable xo(T). The
problem gs posed is of practical interest for it describes the pitch
motion of g satellite in a circular orbit when one principal axis of
the satellite is parallel to the normsl of the orbital plane. In that
case the pitch motion, as shown in Appendix A, is described by the
differential equation
1,6 -30°K, I cos 0 sin 6= M (1-9)
5 375
with the symbols to be defined below. The principal moments of inertia

of the satellite agbout its mass center are denoted by I.,I, and I,.

1’72 3

The vectors gl’gé’bi along the principal axes define a reference
frame B fixed in the satellite at its mass center. Reference frame A

is defined by the orthogonal set of unit vectors El,aé, and a, where

P,

a, 1s along the line of centers (yaw axis).

a, 1is along the tangent to the orbital plane (roll axis).

a.5 is the normal to the orbital plane (pitch axis).




e}
]

angular velocity of reference frame A with respect to a non-
rotating inertial reference frame R at the earth's center.

[%a}
i

angle between ;l and Ei; the pitch coordinate.

These quantities are illustrated in Figure 1-1 for the particular
motion under consideration; namely, 55 = 55. Introducing the change

of variables x = 20 equation (1-9) becomes

¥ - 30K, sinx = 2 (1-10)
3 21
3
The practical consideration of a stable satellite configuration in the
absence of the controlling torgque M dictates that K5 should be

negative. The geometric properties of the inertial ellipsoid further

restrict K5 to the closed interval [-1,1]. Thus

"L<K, <0 . (1-11)

Introducing a nondimensional varigble T =,/-5K 0t equation (1-10) may

)

be rewritten:

2
d—x(—;—l + sin x(7) = ——14——2 = u (1-12)
ar 6I5K59

where now corresponds to radians of orbit traversed by the

v -3Ks

satellite. The right hand side of equation (1-12) is the control
variable u of our originally posed problem and is bounded by A as
before. The bound A is greater than one to guarsntee complete con-
trollability of the satellite. In those satellites where the controlling

torque M 1is generated by Jjets whose thrust is proportional to rate of



Fig. l-1l. Satellite Orbital and Attitude Reference Frames.

Fig. 1-2. 0O-System of Trgjectories.

9



fuel consumption, minimizing the performance criterion

T
0 6I

55t

corresponds to using the least possible fuel to perform the desired
maneuver of zeroing the error and error rate. inasmuch as the satellite
is to be earth pointing whenever passing over certain sections of the
globe, errors and error rates should never accumulate to the point that
they could not be zeroed in half a satellite orbit. We shall com-
pletely solve this problem where T +the prescribed nondimensional

time for zeroing the error rate is at most = or nA/tgﬁ; radians of
orbit (e.g., Ky = -0.05, 5 orbits allowable; K = -1/3, 0.5 orbits
allowable; K3 = -1, /376 orbits allowable.) In the real problem of
reorienting a satellite so that it is again earth-pointing, it is of
little consequence how many summersaults the satellite has passed through
in righting itself. Our objective therefore is to force the error rate
6 to zero and the error 6 to 2Kn (K is any positive or negative
integer) within a prescribed time T kwhile minimizing the fuel spent.

2

But in the reduced equation §;§,+ sin x = u, the dependent variable
at

X 1is twice the error 6; consequently, our aim is to zeroé the error
rate X while transfering x(7) to one of the values UKx. By first
solving the case where we require the error and thus =x(T) to be
brought to the position zero with zero error rate, we will then easily
construct the solution to the actual edrth pointing satellite problem
where the number of complete revolutions about the pitch axis is

immaterial.
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BEHAVIOR OF THE ADJOINT VARIABLES - Introducing an suxiliary state

variable Xo(t) = fg [u(t)]aT the problem may be restated as minimizing
xO(T) while driving (xl(t),xe(t)) to (xl(t),xz(t)) = (0,0). The

Hamiltonian for the augmented system is given by
= + - + -
H,(p,x,u) = pyx,+ py(u-sinx;) + p_|ul (1-13)

where the adjoint variables pl(t) and pe(t) satisfy the following

differential equations:

By(t) = - &
L (1-14)
. OH
pg(t) = = 8;(;
which yield
B,(t) = py(t)eos x;
(1-15)
py(t) = -p,(t)

and Py the adjoint variable corresponding to the augmented criterion
state variable is a non-positive constant. Eliminating pl(t) from

equations (1-15), we obtain
bé(t) + cos xl(t)p2(t) =0 (1-16)

whose solution we are going to investigate.

THE NECESSARY CONDITIONS ON THE OPTIMAL CONTROL - The Maximum Principle

of Pontryagin will now be used to derive the necessary conditions on

11



the optimal control. Theorem 6 of Ref. [1] for our minimum effort

problem reads as follows:

THEOREM 1-1 Let u(t), te[0,t], be an admissible control which

transfers the state point (x ) to (0,0) and let x(t) =

10°%20
(xl(t),xg(t)) be the corresponding trajectory, according to (1-3),

so that x(0) = ( ) and x(T) = (0,0) where time T is fixed.

*10°*20
In order that wu(t) yield a solution of the given optimal control
problem with fixed time it is necessary that there exists a nonzero

continuous vector function p(t) = (po(t),pl(t),pe(t)) corresponding

to u(t) and x(t) such that:

i) TFor all t, te[0,T], +he function
H(p(t),x(t),u(t)) of the variable wu,
[ul <A, attains its maximum M at the

point u = u(t):

H(p(t),x(t),u(t)) = M(p(t),x(t)) (1-17)

ii) The function po(t) is nonpositive which need
only be verified at any point of the interval
[0,t] since p, 1is constant.
p, <0 (1-18)

Applying Theorem 1-1 to our Hamiltonian

H(p,x,u) = px,+ py(u-sin x,) +p_[ul (1-19)

12



relation (1-17) yields

+ -
A if pe(t) > -p,
u¥(t) = { 0 if [py(t)] < -p, (1-20)
-A if pz(t) < p,

Tnasmuch as u*(t) maximizes our Hamiltonian (1-19) if and only if it
maximizes H(p,x,u)/lpol (where lpol # 0), and because the adjoint
variable pz(t) satisfies a homogeneous differential equation (1-16),
we may without loss of generality consider P, to be either minus one
or zero. In the case where P, = -1 we obtain the control law

A if pe(t) > 41

u¥*(t)

i
O

£ |py(t)] <1 (1-21)

-A if pz(t) < -1
whereas the pathological case of P, = 0 yields

+A if p.(t) >0
2

u*(t) = (1-22)

-A if pa(t) <0

It should be noted that in the pathological case the Hamiltonilan is
maximized by a control u*(t) without regard for the performance
criterion. This arises whén so many constraints are lmposed on the

system that our admissible set of controls yields only one value for



our performance functional J(u). In our minimum effort problem,
specifying a time of mission T equal to the minimum settling of that
initial state (xl(o),XE(O)) gives rise to the pathological case.
That equations (1-22) are the relations for the minimum time solution

is readily apparent.

SINGUILAR CONTROLS - We now investigate the possibility that pz(t) = 1

over g finite time interval [tl,tz]. Should such behavior occur then
Pontryagin's Maximum Principle, in particular relation (1-17) is of limited
assistance in characterizing candidates u(t) for the optimal control
u*(t) o#er these intervals. Such controls are usually termed singular

controls.

For the problem at hand
py(t) =1 (1-23)
over the interval (tl,te) if and only if
py(t) = -py(t) =0 (1-24)
over this interval in which case 51 = 0. But,
b, = pycos x,(t) (1-25)

implies that cos Xl(t) =0 over (tl’tg) which can only occur if

il(t) = xz(t) =0 over (tl,tg) or from (1-3) and (1-25):

u(t) = sin xl(t) =+l or -1 (1-26)

14



This control strategy corresponds to holding the phase point at
(xl(t),xe(t)) = ((2K}l)g,0), where K is some positive or negative
integer, during this time interval and then proceeding to zero the

error and error rate. Since the system is aubtonomous, nothing is gained
by waiting at a point in state space for a more favorable time to zero

a disturbance. In addition the expenditure of fuel to hold such a
position precludes our admitting such controls to candidascy for an
optimal control. One notes that the requirement that the adjoint

p. =1 over a finite time interval is incompatible with the condition

2

that the Hamiltonian H be non-negative for on such gn interval

We conclude that we may restrict our considerations to candidates
u*(t) as given in equation (1-21). That the pathological case also
has no singular controls is shown in Almuzara's solution of the minimum

time problem, Ref. [2].

TRAJECTORIES - From condition (1-17) we have seen that the optimal

control can attain only the constant values A, O, -A. Let us find
the trajectories of the system (1-3) subject to these controls. By
assuming u to be constant, we can integrate equations (1-3) to

obtain

“4N§m

= cos x; +tuxy +K (1-27)

with K being a constant of integration. Equation (1-27) can also be

15



written

2 2
- = - -+ -
x2/2 x25/2 cos X, - COS X u(x. -x

1 1s 17 1s (1-28)

where (Xls’xas> is a point on the trajectory.

DEFINITION 1-2: If u = +A, the solution curves of (1-27) given by

“4N§m

= +tAx, + cos x; + K (1-29)

cover the entire plane exactly once since A > 1. This system of tra-
Jectories will be called the P-system, its curves P- curves, and
portions of its curves P-arcs. See Figure 1-3.

Likewise, if u = -A the solution curves of (1-27) are

mhﬁxm

= -Ax, + cos x; * K (1-30)

and the family of curves will be called the N-system, its curves
N-curves, and portions of its curves N-arcs.
Similarly the family of coast trajectories where u = 0 given by
X2
2
2

= cos x; + K (1-31)

will be called the O-system, its curves O-curves, and portions of its
curves O-arcs. See Fig. 2. One notes that there is a direction
associated with each trajectory plotted in xl,x2 space, namely, the

direction in which the phase point (xl,xg) moves with increasing time.

Since trajectories in the upper half plane '(xe > 0) have a direction

16
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Fig. 1-3. P-System of Trajectories.
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which indicates motion to the right of the phase point while just the

opposite holds in the lower half plane.

DEFINITION 1-3: That portion of the P(N) curve which passes through

the origin of the xl,X2 plane and has an associated direction toward
the origin will be called the zero trajectories and designated by P+
(I') as in Fig.1l-4 Since the only O-curve passing through the origin
is the origin itself, any nontrivial trajectory to the origin’meeting
the necessary conditions for optimality of the Maximum Principle has as

its final arc a portion of the zero trajectory.

DEFINITION 1-L PSEUDOEXTREMAL: Any trajectory (xl(t),xg(t)) in the
state space generated by a control wu¥*(t) which meets all the require-
ments of the Pontryagia Maximum Principle will be designated a pseudo-
extremal. The work pseudoextremal rather than extremal is used because
as yet such trajectories are only candidates for optimal paths as they
fulfill only the necessary conditions for optimality given by the
Pontryagin Theorem. We do not as yet know that such solutions provide
even a local minimum of the performance functionsl for neighboring
trajectories; such solutions may not provide an extremum value.
Moreover, a solution providing a local minimum may not provide a global
minimum because our system is not linear.

To find the fuel optimal path, we may limit our considerations to
pseudoextremals. Rather than compare the fuel consumption of pseudo-

extremals directly to locate the optimal path, we instead compare their
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times of golution. Then using Hamilton—Jacbbi theory; namely, Corollary
5-1, we will deduce the fuel optimal paﬁh from the solution time com-
parisons.

To begin we develop two elementary lemmas exhibiting pseudoextremsl
properties. Although the lemmas concern properties well known in the
Literature, we include them for completeness and because their verifica-

tion is immediate for our problem.

IEMMA 1-1 Along a pseudoextremal the Hamiltonian H(p(t),x(t),u) =

M(p(t),x(t)) is constant.

PROOF Along those arcs for which the control u remains constant

in value the time rate of change of the Hamiltonian is
aH - -
i = VP * (v Hx) (1-32)
But the adjoint equations satisfy
D= -V -
D B (1-33)
and from the definition of H = (p,x )
Xx=VH (1-34)
Taking into account relations (1-33) and (1-34) we obtain
dg = _——
ax - (E:P) - (pyx) = 0 (1-35)

or H remains constant along those arcs where the control u remains

constant.
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We now consider the change in the Hamiltonian across a switching point
along a pseudoextremal. Let ts be the time of switching. Then the
change AH 1is given by
+ + + + + + +
= - i + -
A = py (£ x5t ) - py(e))sin x (81) + ult Jpy(t,) - [u(t))]

(1-36)
oy ()%, (8) - py (8 )sin x (67) + u(t))py(t]) - lu(t))])

where

by
~~
ct
S
It

lim =x(t)
t ~>ts

t<t
s

and

x(t) lim x(t)

t ot
s
t >t
s

From Pontryagin's Theorem we know pl(t) and pz(t) to be continuous.
The state variables are also continuous since they are governed by

differential equations with bounded control inputs. Therefore we

have
x (87) = x (67)  p(s]) = p (%)
(1-37)
xp(60) = %y(t0)  py(t0) = py(50) = py(t)
and
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2 = py(t_ ) lu(t))-u(s2)T-(lu(e?) [ [ue]) [) (1-38)

From relations (1-21), the fact that p,(t) is continuous, and that
the absolute value of pe(t) can equal one only at isolated points
te[0,T], the only possible switchings are from O to +A or +A

to O except in the pathological minimum time case where the control
may switch directly from +A to -A or -A to +A. Consideration of

each sequence in turn reveals that
AH = 0 (1-39)

across a switching on a pseudoextremal gs asserted.

LEMMA 1-2 Along any speudoextremal passing through the point

(xl,xz) = (0,0) the Hamiltonian H is a nonnegative constant.
PROOF That H is constant along a pseudoextremal is the result

of the previous lemma. Evaluating the Hamiltonian H at the origin

of state space we see
H = p,u+t 1-4o
which together with relation (1-21) yields
H(0,0) = O (1-41)

if absolute value of Py at origin is less than one. If the absolute

value of p2 at origin is greater than one then

H(0,0) > 0 : (1-42)
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Pontryagin has proven H +to be a non-negative constant for generalized

boundary conditions of autonomous systems, Ref. [1].
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CHAPTER IT

BACKWARDS TIME FORMULATION

Since our aim is to drive the phase point (xl(t),xg(t)) to the
particular end state (0,0) within a prescribed time, it will be
advantageous to reverse the sense of time so that the state (0,0)
becomes the initial state. Both our system equation (1-1) and adjoint
equation (1-16) are reversible over the interval (tl,tE) provided the

solution curves possess no conjugate points on (% tg). Assuming such

1J
is the case one can rewrite the state (xl,x2) trajectories and their
corresponding adjoint solutions (pl,pg) as functions of the backward

time variable T. To distinguish between forward and backward time

gsolutions let

T=T-1
y () = x_(t)
y.(7) = =, (%) (2-1)
y(t) = x,(t)
M (1) = p (%)
My(7) = py(t)
Letting ' denote differentiation with respect to T (' = %; = - %E )
the augmented system equations become
yo (1) = - |l
yi(t) = -y, (1) (2-2)
yé(T) = sin y,(7)-u
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with initial conditions:

yO(O)

y,(0) = x, (1) (2-3)

x (T)

¥,(0) = x,(T)
The backward time Hamiltonian

B = A (D) + a,EXsin 3 (7)) - A lul (2-4)

is just the negative of the forward time Hamiltonian. Consequently,
maximizing the forward Hamiltonian at each point (E,E,u) with respect
to the control variable wu is equivalent to minimizing the backward
time Hamiltonian HB- For the non pathological case where ho may be

taken to be -1, the control law genersting pseudoextremals is

A for XQ(T) > 1
u= { 0 for lxe(r)l <1 (2-5)

-A for XQ(T) < -1

Again XQ(T) satisfies the linear differential equation with time

varying coefficients
1
+ = -
A1) + d(T)eos y () = O (2-6)

as
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XI(T) = - §§§ = —hz(r)cos yl(T)
v (2-7)
Xé(T) = - 85; = Xl(T)

BOUNDARY OF THE T - CONTROLIABLE REGION

DEFINITION 2-1: A point (xl,xg) is T - controllable if there exists

an admissible control u which drives the initial state (XI’XE) to
(0,0) within the prescribed time T. The locus of gll such points will

be called the T - controllable region. See Fig. 2-1.

DEFINITION 2-2: A T-minimum time isochrone is the locus of all initisl

states (xl,xg) ' for which the minimum time in which any admissible

control can transfer the state to (0,0) is exactly T.

Almuzara (Ref. [2]) has shown that the minimum time solution for
zeroing any initial disturbance can always be achieved in at most two
switchings. For those initial states where the minimum time is gt most
7, the minimum time solution is achieved with only one switching.
Before deriving this fact, we state a comparison theorem, Ref. [3] of

which we make good use.
THEOREM 2-1 - Suppose ®(t) is a real solution on (to,tf) of

D+ = -
and V(t) is a real solution on (to,tf) of

b, * 8,(t)D, = 0 (2-9)
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where gl(t) and gg(t) are continuous on (to,tf). Let gg(t) > gl(t)
on (to,tf)- If tl and  t, are successive zeros of ®(t) on
(to,tf) then V(t) must vanish at some point of (tl,t2).

We remark that the comparison theorem remains valid for
ge(t) > gl(t) on (to,tf) so long as strict equality holds only at
isolated points on the interval (to’tf)' We now apply theorem 2-1 to

the following differential equations

- _ )
b, *+ cos xl(t)p2 0 (2-10)

'
~

Py + 1P, =0 (2-11)

to obtain the result that a non-zero golution of equation (2-10) can
have at most one zero in any interval of time less than =« wunits long.
Tdentifying cos xl(t) with gl(t) and the comstant 1 with gé(t),
in order for g nonzero solution of (2-10) to have zeros at t, and t,,
it is necessary that any solution ;2 of (2-11) have a zero within the
interval (tl’tg)' But the zeros of any solution to (2-11) are
separated by =n. Therefore should the interval (tl’t2) be less than

n units in length, one could always construct a solution to (2-11)

having no zero on that interval and thereby contradict the comparison

theorem. Thus we have proved the following:

THEOREM 2-2 - The zeros of the adjoint variable pg(t) solving equation

2-10 are separated by at least =# wunits in time.

COROLIARY 2-1 - Any initial state on a T~minimum time isochrone where

T is less than = can be zeroed with one switching.
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PROOF: Almuzara, Ref. [2] has shown that a switching of a minimum
time control can only occur at the zeros of the function pg(t).

Application of theorem 2-2 completes the proof.

We now give a complete characterization of T ~ minimum time
isochrone. Firstly, the T - minimum time isochrone is the boundary
of the T - controllable region. Secondly, each point (xl’XE) of the
T - minimum isochrone with T < = can be generated by integrating
equations (2-2) from initial condition (0,0) for R seconds with
control u(T) = +A(-A) and continuing the integration for T-R seconds
with control wu(T) = -A(A). Hence, each value of the parameter R
taken from the interval (0,T) maps into two points (xl,xe) of the
T - minimum time isochrone; namely, one for wu(7) initially +A and
one for u(T) initially -A. See Fig. 2-2 illustrating T - minimum

time isochrones.

POSSIBLE SWITCHING SEQUENCES

By limiting the normalized time of mission T to a value less
than n (which corresponds to a limit of ﬂA/tgfg radians of orbit
of the satellite of half an orbit for our chosen value of K3 = -1/5)
we already have seen that initial disturbances coincident with the
boundary of the T -controllable region can only be zeroed by the
-control sequence +A, -A or eise by the sequence -A, A. We now
investigate other possible switching sequences which satisfy the
Moximum Principle while zeroing the initial disturbance within the

allowable time T with minimum fuel expenditure. For any initial
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disturbance which is an interior point of the T- controllable region
p, may always be chosen to be equal to minus one. With the continuity
of the adjoint p2(t) assured by the Maximum Principle we easily
obtain from equation (1-21) the fact that the control may switch only
from g value O to +A or =-A or from +A or -A to O. That the
control law given by (1-21) does not specifly the value of the control
 at those points in time for which ng(t)l = 1 1is of little consegquence
as we have already seen that we may limit our consideration to those
controls u(t) for which ng(t)| = 1 only at a finite number of
isolated points. Choosiné any admissible value for the control u(t)
at these points will leave the pseudoextremal gnd fuel cost unchanged.
In specifying possible switching sequences we revert to the backward
time formulation. Inasmuch as the state would remsin at the origin if
the control u = 0 were used, the backward time switching sequence
begins with the control being initially +A or =-A. We shall derive
results only for those sequences beginning with the control at +A
since identical logic yields analogous results for those sequences
beginning with =-A. The optimal pseudoextremsl for zeroing state
(XlO’XEO) within time T must necessarily consist of some combination
of p, O, and N-arcs. In order to reduce the number of possible
control sequences to be considered for generating this optimal pseudo-
extremal, we shall always limit the allowed time of solution T to be
at most wn. In the proofs of certain preliminary theorems, however,

we shgll find it necessary to further restrict the maximum permissible

times of solution T +to be less than ‘n/2 + arcsinh 1 (= O.78n). This
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additional restriction occurs only ip theorems related to consideration
of pseudoextremals containing an N-arc. Alghough these proofs are
accomplished for this smaller time limit ﬁ/2 + arcsinh 1, the method
of proof suggests the conclusions to be valid for times larger than

n/2 + arcsinh 1 - perhaps even as large as n. In order that we be
aware Qf exactly where our conclusions are guaranteed valid for = and
where Jjust for ﬂ/2 + arcsinh 1, we extend proofs to be vglid for T

aé large as =n - whenever possible and otherwiée spellout clearly that

a particular result has only been proved for times T up to

ﬂ/2 + arcsinh 1. In so doing we obtain rigorously complete results for
the lower time limitation and rigorously near complete results for the
®  time limit, with an indication that the complete picture may hold
for times as large as = as well. Pirst we consider a sequence of the
type +4,0,-A,0,... and seek g limit for the number of such switchings
which can occur within our prescribed time T. In order for such a
sequence to meet the necessary conditions for optimality the backwards
time adjoint functioh Xz(t) must behave as shown in Figure 2-3 where
Ti is the time of the i-th switching. That T5 is always greater
than #/2 + arcsinh 1 =~ 2.46 is the subject of the following theorem.

THEOREM 2-3 ~ If at time Tl, AQ(Tl) > 1 and the backward time state

. variables are zero (yl(Tl) = yé(Tl)=o) then for any admissible control

u(t) such that >\,2(T2) < -1 and xe(rf) = -1 where 7, <7,< T, ‘the

interval Tf-Tl exceeds n/2 + arcsinh 1. The proof is achieved by
examining the minimum time solution of an auxiliary problem having

hl(T) and X2(T) in addition to yl(T) and yE(T) as state variables.
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The original system and adjoint equations are:

v (7) =

7,(7)

kl(r)

Ao (7)

i

It

-¥,(7)

sin yl(T)-u ( )
2-12

gl¥)eos ¥,(v)

A (7)

We now let Zi(T) denote the state variables of our auxiliary problem

defined by
and system equations
23 (1)
1
z,(7)
1
T
z3(7)
i
24(7)

fi

it

z,(7) = y,(7)
z.(T) =
o(T) = y,(7) (2-13)
25(7) = A ()
ZM(T) = ké(T)
= -z,(7)
= sin z_(1)-u
L ) (2-14)

—ZA(T)cos zl(T)

Zﬁ(T)

and consider the problem of a minimum time transfer of the system from

the initial region G, (see Fig. 2-5) defined by

z, = 0
z. = 0
2
(2-15)
z5 free
Z)+_>_l



2,1,

Fig. 2-5. Initial Region Gi of the Auxiliary Problem.

21’12.

Fig. 2-6. Target Region Gp of the Auxiliary Prcblem.
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to the target region G, (see Fig. 2-6) defined by

zl(Tf) free

z,(7.) free (2-16)
25(7.) 2 0
zl'_(’rf) = =1 .

In the auxiliary problem the system dynamics are described by four
first order differential equations (2-14) whereas the original‘system
dynamics had only two first order differential equations (2-2). Further-
more, the criterion of the guxiliary problem is time optimality, not
fuel optimality. We note that the region Gi corresponds to the first
part of the hypothesis of our theorem. Region Gf is just the second
’ part of the hypothesis once we recognize that the requirement
hE(Tg) < -1 can be replaced by requiring Xé(Tf) to be >0 i.e.,
ZE(Tf) > 0. See Fig. 2-7, 2-8. This replacement includes all trajec-
tories where the adjoint dips below minus one but also introduces
additional trajectories which do not cross the plane XQ(T) = =1 but
are tangent to it as illustrated in Fig. 2-8. Thus the case ZB(Tf) =0
may introduce extraneous trajectories which do not correspond to three
switching points. Nevertheless, should the minimum time of solution
exceed ﬁ/2 + arcsinh 1 for the Gl-Gf boundary region problem it
would exceed n/2 + arcsinh 1 for the actual problem of interest which
is more restrictive in that paths which do not dip below 3z, = -1 are

3
excluded. Let
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Fig. 2-7. Replacement of xe(v:g) < -1 by xé(rf) > 0.

EXTRANEOUS SOLUTION

Figa 2"“8 ©

Extraneous Solutions Introduced Via Replacement
of )»2('r2) < -1 by )\,é('rf) > 0.
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?I = '1’/122 + Ilfz(Sin 'Zl-u)-— W5ZL}.COS Zl-Hlfll-ZB -1 (2_1‘7)

define the new Hamiltonian for the auxiliary problem with backward

time adjoint variables Wi satisfying the equations:

vy = - %IE{I = “Ye0s zy - Vzz)8in z) (2-18)
Wé = - g%; = Wl ‘(2—19)
v o= - %%3— = -, (2-20)
¥y, = - g%; = -¥5cos z) (2-21)
The backward time Hamiltonian is minimized by the control law:
+tA  for Wg >0
q = (2-22)

-A for Wz <0

and by any admissible value of the control input wu(t) on the time

set T for which WQ(T) = 0. Por the time optimal solution the adjoint
vector W(Tf) at the moment of time T = Tf, where Tf is the minimum
time of solution, must be orthogonal to some hyperplane B which is a
bracket for the set G, as in Ref. [4¥]. Furthermore, the adjoint
vector at time Tf must be directed toward that side of the hyperplane
B where the set Gf lies. The same transversality conditions must be

met at the other endpoint T = O for some hyperplane B Dbracketing the

set Gi except that the adjoint vector is now directed away from that
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side of the hyperplane where the set Gi lies. By considering all
bracketing hyperplanes we find that the requirement that the adjoint
vector V(0) be orthogonal to some hyperplane B bracketing the set
Gi and that the adjoint point out from that side of B where the

region Gi lies, lead to the results

wl(Ti) unknown
v (7.) unknown
et (2-25)
Vs(1,) =0
\Vu('ri) <0

The component WB(Ti) is zero becaguse the state vector component

ZB(Ti) is free. The initial conditions for the adjoint components

Wl(r) and WE(T) are unknown as these components of the state vector
z(1) are fixed at the left boundary. That Wu(Ti) must be non positive
can best be seen be viewing the planar initisl manifold Gi from an

end view as shown In Fig. 2-9. Consideration of all bracketing hyper-

planes is equivalent to considering all 6 satisfying
0<6<m (2-2k)

in which case
¥ (r;) <0 (2-25)

Since analogous transversality conditions must hold at the right

boundary, i.e., at time Tf the minimum time of solution, we again

consgider all bracketing hyperplanes B for the region G, and require

£

that W(Tf) be an inwardly directed normal for some hyperplane B.
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Fig. 2-9. Bracketing Hyperplane With Normal ¥ to Region Gi'

=Z1,Z2

(7)

Fig. 2~10. Bracketing Hyperplane With Normal ¥ to Region G

f.
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The right end conditions for the adjoint vector V(t) are

¥y (tp) =0
Vv (7)) =0
2 (2-26)
V5(1.) 20
Wh(Tf) unknown

The components Wl and Wg vanish at time 7 since these components

£
of the state vector =z are free. wh(Tf) is unknown as Zh(Tf) is
completely specified to be minus one. That W5(Tf) must be non-negative
is readily seen by examining an end view of the planar target manifold
G, as shown in Fig. 2-10 and recalling the adjoint ﬁ(rf) must now be

an inwardly directed normal for some bracketing hyperplane. From

equations (2-20) and (2-21) we have

W%(T) + WB(T)cos zl(T) =0 _ (2-27)

where
WB(Ti) =0 (2-28)
¥5(t) 20 (2-29)

in order to meet the transversality conditions. We now will demonstrate
that in the last relation (2-23) the adjoint component wu(ri) must be
strictly less thanh zero in order that our problem possess a time optimal
solution. Suppose Wh(ri) = 0. Then since WB(Ti) = 0 equations

(2-20) ana (2-21) yield
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W5(T) = T> T (2-30)

wu(T) =0 (2-31)

For any finite time interval [Ti,Tf] the transversality conditions
Wl(Tf) and we(Tf) together with the result Wa(T) = 0 and equations

(2-18) and (2-19) force that

]
O

Wl(T) = all TG[Ti,Tf] (2-32)

i
(@)

¥o(7) (2-33)

as well. Therefore, the only solution to the adjoint equations satis-
fying the transversality relations and the requirement that Wu(Ti) =0
is the trivial solution V¥(7) = 0. However, Pontryagin's Maximum
Principle, and in particular theorem 2 of reference [1l] guarantees that
the adjoint solution corresponding to the optimal time solutions be
nonzero. Hence, assuming the existence of the time optimal solution

of a trajectory from region Gi to region Gj’ the adjoint component

Wh must not be zero at the initial time and we have the result that
¥, () <o (2-34)

Thus we are guaranteed a nontrivial solution to (2-27). Should the
equality hold in the transversality relation (2-29) then application

of theorem 2-2 to this solution of equation (2-27) yields the result

To~Ty > x (2-35)
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But in the event that the transversality relation at the right hand

end is iIndeed

w5(rf) >0 (2-36)

we can no longer guarantee the validity of inequality (2-25). However,

relation (2-36) implies upon examination of Fig. 2-10 that
z5(7,) = O (2-37)

With the aid of this additional boundary condition on the state variable
we now seek a lower bound on the minimum time of solution of the less

restrictive problem

éu = 2 A (2-38)
2y = -uz), (2-39)
meeting boundary conditions
zu(rf) = -1 z,(7,) > 1
(2-Lk0)

iu(Tf) = 25(7 ) =0 25(11) free

where the control variable satisfies
lul <1 (2-41)

as we have replaced cos Zl(T) by the control function E. Since now
we consider u(cos zl(t)) to be an arbitrary piecewise boundary function
of time no longer restricted by the plant dynamics formally described

through zl and 22, the minimum time of solution for this less
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restrictive problem is a lower bound for the minimum time of solution
of our auxiliary problem of interest. The solution to this problem is
more readily seen if we revise the sense of time 1.e., return to the

forward time formulation. Then the problem is to drive the plant

Xh(t) = -XB(t) (2-42)
XB(t) = xu(t)u (2-43)
from the position Xh = =1 with zero velocity to the position x) = +1.

The optimum policy as derived in Appendix B is to provide maximum

acceleration all the way i.e., maximize .ih = Jaxh yielding control
law:
u=-1 x >0
(2-4k)
W=+l x <0

Ir tc designates the time xu erosses into the positive half plane

then the solution is given by

Xh(t) = —cos(t—ti) b, St <t (2-45)
xu(t) = sinh(t-tc) t, St <ty (2-86)
and the time of solution is
= X ; -
tp = 5 * arcsinh 1 (2-47)
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which completes the proof of theorem 2-3. The backward and forward
time optimal solutions are illustrated in Figs. 2-11 agnd 2-12.
A straight forward modification of the proof of theorem 2-3

yilelds the result:

COROLIARY 2-2 - If at time 7, xz(rl) =1 and xl(rl) >0 and at

time T, xg(rf) < -1 then the interval T.-7

n/2 + arcsinh 1. See Fig. 2-13.

1 is greater than
Prom theorem 2-3 we conclude that a P-0-N-O0 sequence of arcs on
a pseudoextremsl could not occur in time n/2 + gresinh 1. That an
0-P-0-N sequence can not occur within this time limit also is the
conclusion of corollary 2~2. Therefore, the only pseudoextremals we
need consider containing an N-arc is the P-0-N (or N-O-P) pseudo-
extremal, provided that time T permitted for zeroing the state is

less than ﬂ/2 + arcsinh 1.
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Fig. 2-11. Backward Time-Optimal Sclution of
the Reduced Auxiliary Problem.

SINH(t- t.-J)

-COSs(t-t;)

Fig. 2-12. Forward Time-Optimsl Solution of
the Reduced Auxiliary Problem.
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Corollary 2-2 T_-T, > g + gresinh 1.

Fig. 2-13. Ty
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CHAPTER ITI

TRAJECTORIES TN BACKWARD TIME

We begin by considering the backward time pseudoextremals emanating
from the origin for which the Hamiltonisgn HB is zero. Again we
consider only those extremals with the control initially +A for iden-
tical reasoning yields analogous results for the case -A. In the back-
ward time formulation the subscript s denotes the value of the state
and adjoint variables at the first switching which occurs on the zero
trajectory. The two succeeding switchings which may occur within time
T are denoted by the subscripts r and g. For the case where the

Hamiltonian
= - + i - + = -
By = M (T)y, () + (7)) (sin (1) -u) + |u| =0 (3-1)
the adjoint variables at the first switching have values

Mpg = 1 (3-2)

k28s1n yls ) sin yls

1s ¥ 7 (3-3)

s ]

~ The adjoint variable LE(T) in Appendix C is shown to satisfy
the following relation along an O-arc which does not cross the ¥y

axis

y, (1)
M(T) = ye('r)[;;-; *Hy f . ag ))5/2] (3-4)

2
Yis -(2(cos o-cos ;yls)+y2S
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where the point (yls’yES) is the starting point of the are for T =7

Thus along this portion of the pseudoextremals under consideration

A (T) 7o) (3-5)
T) = -
2 yés

The second switching r occurs when
I (v )l =1 (3-6)

for the smallest Tr greagter than TS. A switching from O +to +A

occurs if

Yor = Yoq (3-7)
whereas a switching from O to -A occurs if
Yor = Vos (5-8)
Examination of the equation of an O-curve
yg-Zcos ¥y ='y§S- 2cos ¥, = 2K, (3-9)

with the constant K, defined by equation (3-9) yielgs two classes
of curves. For Kl > 1 +the curve defined by the first switching

remaing entirely below the ¥y axis for Yo initially < 0. The
gsecond switching is therefore from 0O to +A. Applying (3-7) and

(5-9) we find that

cos ¥y, = COS ¥y (3-10)

The locus of all points (ylr’ygr)' satisfying conditions (3-7) and

L9
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(3-9) in the smallest time Tr: Tr >,TS is therefore a reflection of
an arc of the zero trajectory about the line ¥y, = e
letting C denote the ¥y coordinate of the intersection of the

zero trajectory and the O-curve corresponding to X, = 1 we have from

1
(1-27)

cos ¢ - cos O + A(e-0) (3-11)

—== -0=cosc - cos =« (3-12)

from which

=% (5-15)

Should the first switching of an HE = 0 pseudoextremal occur for
% < yls < n then the second switching is from O to +*+A and occurs
on the reflection of the zero trajectory about the line vy, = T as
illustrated by Fig. 5-1.

In the case where Kl < 1 +the O-curves form closed paths about

the origin. Along such paths (y, < g) condition (3-6) is met for
1s A

the first time at the point

(¥1p0¥pp) = (¥940-9p,) (3-1%)

which represents a reflection of the zero trajectory about the ¥y axis.
These points correspond to switching from O to -A.
We now note that for the first switching to have taken place XE(T)

had to cross the line XE(T) = 1 from above and hence ké(T) <0
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K=1 O-CURVE

+
Fig. 3~-1. ‘Pn: Locus Second Switching O to +A
of an HB= 0 Pseudoextremal.

Fig. 5-2. HB = 0 Pseudoextremals.
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as seen in Fig. 3-3. Condition (3-3) leads to the requirement that
siny, >0 (3-15)

which rules out the possibility of any HB = 0 pseudoextremals having
a first switching y,, on the interval (m,2n).

The complete system of HB = 0 pseudoextremals for Vi < 2rx is
shown in Fig. 3-2.

These pseudoextremals whose Hamiltoniagn is zero are of particular
interest. If we relax the time specified for reaching a given state
(yl,yg) lying on such a pseudoextremal (i.e., relax the specified time
to zero the disturbance (Xl’XQ) in the forward time formulation) we
may achieve no reduction in fuel costs.

To demonstrate that such is the case we utilize the following

result of Joseph C. Dunn first published in reference [5]:

THEOREM 5-1  For a compact set of admissible control inputs the

canonical characteristic differential equations of Hamilton-Jacobi

exist on a region, R, 1if and only if the pseudoextremals of the Maximum

Principle are described by a unique system of differential equations.

Furthermore, if this unique system of differential equations exists,

then it necessarily coincides with the canonical characteristic equations.
As in the classical calculus of variations (see Ref. [6]) we may

now introduce a besgt performance or minimum cost function

T
V(yl:ygﬁf) = ﬁ?ﬁ ’/(;f-lu('f)ld'f (3-16)

where ﬁ(yl,yg) is the set of all admissible controls which transfer
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-T
Fige 5-3. Behavior of Adjoint A.(T) at First
Backward Time Switching Ts.
F==V(T)
A
|
| _
' \
0 l -7
Tmin

Fig. 3-4%. Fuel Expenditure F Versus Allowed Time of Solution Tps
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the gtate from (0,0) to (yl,ye) within time 7.. Then in that

region R of the cartesian product space le y2X hlx xex T where the
pseudoextremals of the maximum principle are described by a unigue
system of differential equations; namely, wherever lkz(T)( % 1 we

have (see Ref. [7]) the following:

aV(;Y]_:.VQ:T) o,
0 + Hy(hyshpo¥y5¥,) = O (5-17)
where
H; = Su% HB(X]_))\'E:}']_)YQ:U) (3-18)
u€e
and
N (g ,y,07) = A (T) (5-19)
g.:;r—i yl)ye) — i

as a direct consequence of theorem 35-1.
Therefore along the HB = 0 extremals excepting switching points

we find that

%‘Tl (y15¥557) = 0 (5-20)

and differential changes in the time constraint do not lead to any
reduction in fuel expenditure.

If we plot the minimum fuel cost F versus the time constraint
T for a particular initial state (xl,xe) lying in the region spanned
by these pseudoextremals one expects to find flat portions at least
locally corresponding to a range of T for which equation (3-18) holds.

See Fig. 3-4.
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As we shall see in the synthesis of the optimal control law for
the range of T where (3-20) holds for our particular initial state
(xl,xg), the phase point arrives at the origin at a fixed time and then
waits there with control zero until the time constraint is met.

Since

H, <0 | (5-21)

along any pseudoextremal through the origin (0,0) for a fixed end’

point in backward time (yl(Tf),yE(Tf))

~0V(y5,,7)/ 3% < 0 (5-22)

whenever the derivative exists.

As one would expect the fuel cost -V(T) versus backward time T
curve for a fixed end point must be monotonically decreasing. in the
forward time formulation the fact that no fuel is expended holding the
phase point at the final state (0,0) means that such minimum fuel cost
versus time curves must be monotonic.

We are now in position to agsert the following corollary:

COROLIARY 3-1 Any pseudoextremal possessing a non-zero Hamiltonian

which zeros the state (xl in time +t_, where t is strictly

07%20) £ T
less than the prescribed time of mission 'I‘f is not fuel optimal for
the prescribed time Tf~

Thus the phenomenon of waiting at the origin i.e., meeting the
time constraint "too early" is fuel optimal only for pseudoextremals

along which the Hamiltonian vanishes.
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Corollary 3-1 is a direct consequence of the theorem due to Dunn.
Suppose such a pseudoextremal were optimal. Then by relaxing the exact
time of zeroing the state

) from tf to T Dunn's theorem

(x130%5 £’

predicts a reduction in fuel consumption; i.e., another path would
consume less fuel for the maximum time of mission 'I‘f thereby contra-~
dicting the optimality of such a pseudoextremsl.

Up to now we have not worried about the fact that for those points
T where l)»g('r)l = 1 (i.e., at switching points) relations (3-17),
(3-18), and (3-19) are not defined inasmuch as the canonical differential
equations of Hamilton-Jacobi do not exist unless the pseudoextremals of
the Maxiﬁum Principle are defined by a unique system of differential
equations. But we have already seen that singular controls are not
optimal. The system of differential equations of the Maximum Principle
is unique except for the isolated points on the time axis where
,XE(T)I = 1. With the aid of this fact, Corollary 3-1 remains valid
whether or not we are at a switching point at the moment of considera-
tion. TIf at such a point TS we can always wait an arbitrarily small
time until time T _-8T at which time relations (3-17), (3-18), and
(3-19) are defined. From this new point TS-BT we insist that for
the time remaining, the path must be fuel optimal for time TS—5T if
the original path were fuel optimal for a time TS. This is merely a
restatement of Bellmans Principle of Optimality. From this new point
we may reapply the arguments of Corollary 5-1 to substantiate our claim
that Corollary 3-1 is valid even when (3-17), (3-18), and (3-19) are

not definable.
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Whenever we limit the time of mission such that

Tf S n (5"25)

then there is a unique HB = O pseudoextremal passing through any state

(yl,yg) reachable within time 7_, by such extremals. Otherwise, for

f
larger Tf two types of multiplicity can occur. In Fig. 5-5, the state
(yl,yg) can be reached by the path OBCDEFH generated by the control
sequence A, O, -A, O, A, O which is an HB = 0 pseudoextremal.
Another candidate is path OGH generated by the control sequence A, O.
The other type is the path OD'E generated by the sequence -A, 0. Both
multiplicities are eliminated by limiting the time Tf s0 that at most
two switchings can cccur. It should be clear that the path OBCDEFH
requires lessg fuel than OGH and therefore one HB = 0 pseudoextremal
may not be the optimal path once the time congtraint is relaxed.
Almuzara Ref. [2] has shown the zero trajectories Pi,F— to be time
optimal and thus OG could only be fuel optimal in the pathological
case. Clearly path OBCDEFG uses less fuel.

Having previously demonstrated that the second switching of P-0-N

type HB = 0 pseudoextremals occurs on the reflected zero trajectory

+
r we now will show:
I

LEMMA 3-la  The second switching (0-N corner) of any P-0-N pseudo-
+

extremal with nonvanishing Hamiltonian occurs below the curve I& .
1

PROOF: Along that portion of an O-arc below the ¥ axis the

adjoint hE(T) satisfies
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— = = — COAST
~——— BANG

Fig. 5-5. Nonuniqueness of = 0 Pseudoextremals
Through a State (yl,yg).

Fig. 5-6. Second Switchings of P-0-P.e« Pseudoextremals.

In a P-O-P+-. the second switching R 1lies

below the curve F;.
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vy(e) o
() = yE(T)[_+HBf S ]5/2} (3-24)

- +
[2(cos O-cos Y1q ) yzs

whereas on that portion of an O-arc above the ¥y axis, LE(T)

satisfies
w0l |
+ [251n ylmiybm_a)]5/2] o [25in ylm(;lm'yls)]l/e
+ véj325 [[2(cos oucos—;l )+yé E + —— ylm?ylm—OQJB/g}dg
' [2sin’y, ( y]lm Ly, (1)1 z] (5-25)

where ylm denotes the vy coordinate of the path at the crossing
of the y, axis. The derivation of (3-25) is given in Appendix D.

Let 22(7) denote the adjoint corresponding to an HB = 0 pseudo-
extremal and XE(T) the value of the adjoint along that portion of an
HB % 0 pseudoextremsl which coincides with the HB = 0 pseudoextremal

up to the second switch point. Then on an O-arc below the ¥y axis

~ (7)
M)y (1) = g, ()i fyl == S7E<o ()

- - +
Y1g [2(cog O-cos Vg ) y25

and on an O-arc above the y, axis
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xz(w)-ig(r) = y,(T)Hy %fylm[ -1 75+

2
Y1 [2(cos o-cos yls)+y28]

1 1

ao +
-0) ]5/2] [ESiHBylm(ylm-yls)]l/g

+

[2sin ylmﬁylm

(3-27)
I1m -1 1
+’/ ) [ ]5/2 ' —cr)]B/g]d(T *

2 .
yl(T [2(cos o-cos yls)+y2s [2sin ylm(ylm

1

1/2
[ESirlBylm( Vg Y1(7)] /

That )»2(1.’)-22(1‘) is infact less than zero gbove the y, @axis as well,
is yet to be determined from equation (3-27). From (3-26) up to the
point M(ylm’y2m)’ where the pseudoextremal crogses the ¥y axis,

the quantity XQ(T)—S\.‘\Q(T) remains negative. Suppose that )»2(1')—5\,\2('5)
where not negative above the ¥y axis. Then from the continuity of

both XE(T) and XE(T) there must be some T, for which

M(T,) = () (3-28)
or from (3-27)
1 . (T [ -1 .
[2sin :ylm(:ylm-yls)]5/2 '415 .[2(cos o-cos ylm) ]5/2
S P
[2sin y, (v, - )]5/2
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_ 1 + Y1m [ -1 —— +
[2sin ylm(ylm_yl(TC)) Yl(Tc) [2(cos O-cos Ylm)]5/2

+ 1 )]5/2] do (3-29)

_[281n ylm(ylm

Congidering the left hand side of equation (3-29) to be a function of

Y. say G(yls) where y, =~ 1is now fixed, equation (3-29) becomes

simply
6(y,,) = 6y (7)) (3-30)
But G(yl) for vy % ylm. is a monotonic function of yl inasmuch as

dG(y, )
dyl

1 _ 1 >
[2(cosg y-cos ylm)]B/Q Iyg(T)’B

0 (3-31)

and hence equation (3-29) can only hold if

¥g = ¥o(7,) - (5-32)

S

”~
This means the first time XE(T) could again equal h2(T) is when the

+
phase point reaches ;y in which case a switching would occur on
1
+
Dy . On the other hand should (3%-32) not be valid, then (3-28) also
1
doeg not hold in which case

M(T) = Ry(T) <0 (3-35)

remains valid on that portion of an O-arc above the vy axis and

+
continues to hold past the time of crossing the curve I' . In
1
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either case (3-26) or (3-33)

(7)< Sop(7) (3-34).

along that portion where the two pseudoextremal state trajectories

+
coincide. Since on T
1

My () = -1 (3-35)

by continuity of hg(T) a switching from O +to =-A must have occurred
+
on or below I' .
I
In like manner we seek the result:

LEMMA 3-1b. The second switching (O-P corner) of any P-0-P pseudo-

+
extremal must occur below the curve I‘TE the reflected zero trajectory
about the line y, = . (See Fig. 3-6).

PROOF: From (3-24) we have at the second switching

_ _ 1 I1r do
e ygr,:ye ' f -[2(cos o- )Hyo ]5/2] (5-2¢)
S ylS COs8 cos yls yzs

or since HB <0

1 1
—_— > == (3-37)
yér yés

Since both Yor and Vo, are negative

2 2
Vor 2 Voo (5-38)

But
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2 2
yer_ygs - E(COS ylr-cos yls) (5—59)

and therefore

cos ¥y, > €08 ¥, (3-40)

or for

0< X < X, > 1 (3-41)

+
and the second gwitching is indeed below Fﬂ. See Fig. 3-6.

DEFINITION‘B—l: A T-Bang-Coast Isochrone is the locus of all initial

states (Xl’XE) which can be zeroed in exactly time T by the control
sequence O, +A. See Fig. 3-7.

Whereas any point on a T-bang-coast isochrone may be reached from
the origin by a P-O type backward time trajectory, such a path is not
necessarily the fuel optimal path for that particular time T.> When

these paths are fuel optimal is the topic of the following theorem.

THEOREM 5-2: If T < w then the fuel optimal path for zeroing any
state lying on the T-bang-coast isochrone within T units of time
ig a P-0 trajectory.

Thus once the state point (xl(t),xg(t)) and the time-to-go T
have values such that the state point lies upon the T-bang-coast

1

isochrone, the state point merely "rides" the T-bang-coast isochrone

to the origin.
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Fig. 5-7. Behavior of T-Bang-Coast Isochrones as T Changes.
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The proof of theorem 5-2 proceeds by direct elimination of other
candidate pseudoextremals.

Candidate 1 is a P-0-N trajectory with first switch point (yls,ygs)
such that Y1s < C. See Figs.3-8 and 3-1.

We desire to show that path O, 52, Q

N (P-0 type trajectory

generating the T-bang—coast isochrone) uses less fuel than the O’Sl’Rl
Q2 path congisting of a P-O-N type trajectory. First we note that
thig P-O-N trajectory uses less time than the P-0 trajectory. By the
definition of T-bang-coast isochrone the P-O trajectories O’Sl’Rl’Ql
and O,Sg,QE both require time T.

Denoting the time required to traverse a particular arc path by

7(*) we have
T(R»Q5,Q) < T(R},Q,) (5-42)

This result follows from the fact that

dy ay
R (5-43)
1 Yo
and therefore
R
(R 50,8, ) =f 1 & (5-hk)
Q, y,(E)
1 Yo
R
©(R,,Q.) = f 1 _ & (3-45)
VT 5.8
1 Yo
Since
To(8) <¥,(8) ¥ Q <E<R (5-46)
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i.e., the path Rl’QE’Ql lies entirely above the path R and

1’9
relation (3-42) is valid. From (3-42) it follows

(3-k7)
=T(O)82:Q2) =T

Furthermore since any T-bang-coast igochrone for T < n lies below the
+
curve ;y 5 the P-O-N trajectory O—Sl-Rl-Q2 could only result from a
1
pseudoextremal possessing a nonzero Hamiltonian as required by lemma

3-1. Taking into account that

and applying Corollary 3-1 eliminates such a P-0-N extremal from consi-
deration as a fuel optimal path.

Candidate 2 ig a P-0-N trajectory with first switch point (yls’y2s)
such that Y1g > C. BSee Fig. 3-9.

Clearly the P-0O path (O,Sl,Q) useg lesgs fuel than the P-0-N path

(0,8,R,Q) for the latter expends additional fuel along arc S.-S and

1
arc R-Q.

Candidate 5 is any trajectory consisting of P arcs alternating
with O arcs (P-0-P-O-P-++.) as in Fig. 3-10.
By definition of T-bang-coast isochrone the arc O,Sl,P requires

T wunits of time. Furthermore,

©(0,8,R,Q,P) > T(O)Sl:P) =T (3-49)
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Fig. 5-10. Candidate 3 P-0-P-O... Type Trajectory (0,S,R,Q,P).

Fig. 3-11. Candidate 4 P-0-P-0-N Type Trajectory (0,S, R,Q,M,L)
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via the argument of (5—45)- Such trajectories are eliminated due to
their failure to meet the time constraint.
Candidate 4 is the P-0-P-0-N trajectory shown in Fig. 3-11.

A P-0-P-0-N trajectory can always be found such that

7(0;8,RsQ,M, L) = 7(0,8,,L) = T (3-50)

If furthermore
©(8,8;) > ©(R,Q) + 1(}4,L) (5-51)

then thigs P-0-P-0-N trajectory would use less fuel than the P-0
trajectory 0,S8',L. In order for such a P-0-P-0-N trajectory to be
optimal the adjoint variable hg(T) would have to behave as shown in
Fig. 3-12. But employing the conclusion or corollary 2-5 we have

7(R,Q,M) > g + arcsinh 1 (3-52)

Furthermore, from lemms 3-1 the gsecond switching of such a pseudo-

extremal (ylr,yyz) is such that

v > % (3-53)

r
If T(O,ﬂ) denotes the minimum time to drive the state point from the

origin to the line y, == then certainly

7(0,8,R,Q,M) > Z + arceinh 1 + 7(0,%) (5-54)
But
Tc .
©(0,%) = f ac TE (3-55)
0 [2(cos 0-1+A0)]
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If we restrict the magnitude of A “such that
w(0,1) > % - arcsinh 1 (3-56)

or equivalently A <A where A satisfies
max max

5
f ao 5 = g - arcsinh 1 (3-57)
0 [2(cos o-1+A_ o)]~

max

then
7(0,8,R,Q,M) > x (3-58)

and such a pseudoextremal can not occur for our solution where Tf is
restricted to be less than =n. Relation (3-57) is no restriction at
all in the solution of the actual earth pointing satellite problem for
the control bound A could still be about 13.6 times the maximum
gravitational torque (see eq. 1-32) as can be verified by evaluating
(3-57)+ The design parameter A, as indicated in Chapter V, should
probably lie between 1.2 and 5.0 to achieve efficient zeroing of
disturbances without undue control torque requirements.

A1l possible pseudoextremal candidates other than the P-0 extremals
which generate the T-bang-coast isochrone have now been eliminated from
being fuel optimal. The existence of an optimal solution together with
Pontryagin's Maximum Principle completes the argument that these P-0
pseudoextremals are indeed the optimal trajectories as asserted by the

theorem 5-1.
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Fig. 3-12. Adjoint M, Behavior Corresponding to Candidate 4.

e
—

Fige. 3-13. Adjoint hg Behavior Generating a P-0-P-0-P... Pseudoextremsl.
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CONTROL IAW FOR REGION BOUNDED BY T-BANG-COAST ISOCHRONE AND T-MINIMUM

TIME ISOCHRONE

In the analysis of theorem 3-2 one fact should have become clear.
In order for any state beyond the T-bang-coast isochrone to reach the
origin within time T its path must necegsarily contain an N-arc. Now
the reason for our preoccupation in Chapter IT with limiting the fixed
times of mission Tf to be less than g + arcginh 1 becomes clear.
Such states must have as pseudoextremals a P-0-N trajectory. A
P-0-P-0-N..+ or P-0-N-O... type can not occur within the time limit
% + arecsinh 1 via corollary 2-2. Therefore for a state outside the
T-bang-coast isochrone at time-to-go T where T < % + arcsinh 1 the
control is u(t) = -A. See Fig. 3-13.

This region of Fig. 3-14a for which the optimal control is =-A 1is
a time dependent region. TIts isochrone boundaries are the T-minimum-
time isochrone and the T-bang-coast isochrone which are time varyingv
curves as their names suggest. Given an initial disturbance (x

107%20)

to be zeroed within time Tf lying outside the Tf

we now seek the trajectory traced by the phase point. If t denotes

-bang-coagt isochrone,

the time that has lapsed since we began zeroing the disturbance, then
the time remaining for completing the solution i.e., time-to-go T 1is

given by
T = T - (3-59)

Referring to Figs. 3-14a,b,c,d so long as the state (xl(t),xg(t))

belongs to the region bounded by the T-minimum~time and T-bang-coast
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Te- MINIMUM-TIME  ISOCHRONE
YBANG- COAST ISOCHRONE

27 ( 3T

>x1

\

Fig. 3-14a. Optimal P-0-N Path for Zeroing State X within Time
T, (OSRX). Dashed portion is yet to be traversed.
50l1lid pertion is that already traversed.
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Fig. 3-14b. State X 1is still within the time-varying
u = ~A control region.
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Fig. 3-1kc. State X intercepts the shrinking bang-coast
isochrone and control switches to zero.

111
T

Fig. 3-14d. State X 'rides' the shrinking bang-coast
isochrone to It

o



isochrones the control remains wu(t) = -A. As the phase point proceeds
along an N-arc toward the boundary of the wu = -A region; namely, the
T-bang-coast isochrone, this boundary is itself shrinking toward the
origin. The control remains u(t) = -A until the phase point (xl,x2)
intercepts the T"-bang-coast isochrone at time-to-go T < T from
which time on the solution is given by theorem 3-2, i.e., the phase
point rides the shrinking bang-coast isochrone to the origin. We

write for future reference:

OPTIMAL CONTROL IAW 3-1. Any state (xl,xg) residing within the region

bounded by the T-minimum-time isochrone and the T-bang-coast isochrone

at time-to~go T has control wu(t) equal minus A.

CONTROL ILAW FOR REGION BOUNDED BY T-BANG-COAST TISOCHRONE AND ZERO

TRAJECTORY

Theorem 35-2 provides the optimal control law whenever the time-to-
go T is such that the state (xl(t),xg(t)) belongs to the T-bang-
coast isochrone. We now seek the minimum effort optimal trajectories
and control law for those initial disturbances. (xl(to)’XE(to)) belong-
ing to the region bounded by the Tf-bang-coast isochrone and the zero
trajectory where Tf is the maximum time allowed for zeroing the
disturbance.

By limiting the allowable time T_, to be at most =« wunits it is

£
sufficient to consider only trajectories consisting of alternating P
and O-arcs. That this is the case can be seen by merely reconstructing

the arguments of the proof of theorem 5-1.
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Before delving into the precise structure of such P-0-P-Q---.
pseudoextremals we develop some preliminary lemmas.
LEMMA 3-2  Along any pseudoextremal consisting of alternate P and
O-arcs (P-0-P-O+++) the adjoint variable is always positive up to
the last O-P or P-0 corner of the seguence.

PROOF: Along a P-arc the adjoint variable LE(T) is always
greater than or equal tg one and therefore surely positive. Along an

O-arc XQ(T) igs given by

yl(T> -4
[

A (1) = y (1) 2=+ (5-60)
(1) = y,(7 [Yes iy fyls 2(005 0005 3’13)““3’2515/2]

where the subscript s now denotes the values of the variable at the
first switching i.e., P-0 corner in backward time. Should Xg(T)
become negative then the term in brackets in equation (3-60) must be

positive at that time. Letting = denote the first time XE(T)

N

vanishes we hgve

(t.)
S Hy fyl n -~ (3-61)

=0
Jos ¥, -[2(cos oO-cos yls)+ 2 ]5/2

8 yQS

Thereafter the bracketted term ig monotonically increasing and therefore
for some T > TN

xz(w) < -1 (3-62)

since yE(T) along an O-arc of a P-0-P gequence must be negative and
bounded away from zero. But then the pseudoextremal would consist of

an N-arc. This contradicts the fact that we are dealing with a



P-0-P-0-++ type extremal and thus until the final P-O corner kg(r)
migst be positive and nonzero.

IEMMA 5-3 In a P-0-P-0-P-0 pseudoextremal the fourth switching
(second O-P corner) occurs to the right of the line vy = A1,

PROOF: For such a pseudoextremal the associated adjoint must
behave as shown in Fig. 3-13. Here we have used lemma 5-2 guaranteeing
XE(T) to be positive. Between the switching points S8 and R +the
adjoint function XQ(T) achieves a relative minimum as it also does
between the switching points Q and M.

At these relative minimum of xg(r) two relations hold:

1) w(r ) =0 (3-63)
ii) x'é('cmin) >0 (3-64)

Recalling that )
M) = 2y (7) (5-65)

and expression (5-1) for the backward time Hamiltonian HB we obtain
HB = h2(Tmin)Sln yl(rmin) (5_66)
Furthermore, from (3-54) and (2-6)

Xg(Tmin) = —XQ(Tmin)cos yl(Tmin) >0 (5_67)

Now from lemms 3-2

XE(Tmin) >0 (3-68)

[



and therefore at these relative minima we have from (3-56) and (3-67)

) <o (3-69)

i) sin yl(Tmin -

ii) cos yl(T ) <O (3-70)

min

Therefore the smallest value of yl( in) must lie in the half open

T
sm

interval given by

r<y (v )<L (5-71)

smin
At the relative maximum of xg('r) the condition
" -
My(T ) <0 (3-72)
leads to the requirement
T > -
cos yl( ) >0 (3-73)

Therefore the smallest value of yl(Trmax) such that

> . .
yl(T ) yl(Tsmax) lies on the open interval

%; < yl(Trmax) < am % (5-TH)

Reapplying relations (3-69) and (3-70) and the requirement that

1 gmin? > T ) (5-15)
we obtain the result that
_ x -
51 S 7 (Tgqin) <37 * 3 (3-76)
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Now since

vy () >y (7 .0) (3-77)

dmin
we have the desired result

yo(7,) > 3 (3-78)
as asserted by lemma 3-3.

Thus whenever the T—controllable_region lies entirely between the
lines Xy = =5n  and kl = 91 we may limit our consideration of
P-0-P-0s++ gequences to those candidates having at most three switchings.

We now embark upon a method to order these P~-0-P-0O type pseudo-
extremals so that we may derive the switching curves. Consgider the zero-
trajectory P+ and a parallel P-curve to the right of I& as shown in
Fig. 5-15. The first switch point (P-0 corner) on Ii ig denoted by the
point 8 whereas the second switch point (0-P corner) lying on the given
fixed P-curve is denoted by the point R. A third switching (P-0O corner)
should it occur will also lie on the given P-curve and be labeled
point Q.

The first switch point S is allowed to vary or move down along
the zero trajectory F+. We seek the effect of such variagtion upon
the position of the third switch point Q which is constrained to
remain on the given P-curve. The result we are seeking, as given in
the next theorem and illustrated in Fig. 5-15, is that as S moves
down to 8', Q moves up to Q'. Purthermore, if the points S and
R characterize an actual pseudoextremal, then the function mapping

the points S into the points @Q 1is piecewise continuous. If in

9



Fig. 5-15. BSwitching Points S,R,Q of the P-0-P-0
Trajectories of Theorem 3-3.

Fig. 3-16. Sandwiching of P-0-P-0 Type Trajectories about the Degene-
rate Trajectory at S in which the Points R and Q
A cr cr cr
Coincide.
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addition Q remains in the region under consideration; namely,

the mapping is continucus.

Restated in the form of a theorem we have:
THEOREM 3-3 If point S on F+ and point R on a fixed P-curve are
first and second switch points of some P-0-P-O.ss pseudoextremsl, then
the mapping Ml of the yl coordinates of the points S onto the yl
coordinates of the points Q 1s a monotonically decreasing function.

This theorem means that the P-0-P-0 pseudoextremals are "sandwiched"
between the second and third switch points. The point Q approaches
the point R wuntil the second and third switch points coincide. BSee
Fig. 3-16. The behavior of the adjoint variable XE corresponds to
the coincidence of points R and AQ is shown in Fig. 5-19 where the
curve is tangent to the switching line X2(T) = 1.

To facilitate the proof of theorem 3~3 we will need the preliminaxry
result of lemma 3-4.
LEMMA 3-k4 If point S8 on F+ and point R on a fixed P~curve are
first and second switch points of some P-0-P bseudoextremal, then the
mapping HB is a monotonically decreasing function.

We shall return to the proof of this lemma but first let us complete

the proof of theorem 5-3.

PROOF OF THEOREM 3-%3  Given Y1 and qu as the vy coordinates of
the first and third switch points of a P-O-P-O¢ee pseudoextremal and

§ls and §lq the corresponding abscissas of another P-0-P-0
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Fig. 5-17. Capped and uncapped trajectories 001n01de Jor Y <Y, <X q
If path OSRQ is a pseudoextremal, path OSRQ is Bdt.

Fig. 3-18. Behavior of A, and hz If Yy, Were Greater Than Jige I
k corresponds to thé pseuddextremal solution h does not.
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pseudoextremal of theorem 5-3, we must show that

Y1s 7 Y157 V14 = Y1g (5-80)
Suppose to the contrary §lq > qu. For
Ir = I1 = qu (5-81)

both pseudoextremals coincide. See Fig. 3-17. Now consider the behavior
of the adjoint variables hg(yl) and ﬁg(yl) corresponding to such
pseudoextremals as functions of the variable vy See Fig. 3-18. In

order that qu > qu it is necessary that the adjoints have equal

values

M (I) = £,(1) (3-82)
for some v, = I on the interval

Yip ST SV, (3-83)

Evaluating the Hamiltonians HB and ﬁB at vy, = I and noting that

ye(I) = y2(I) we find

It

(v (DA (T)y, (1) + O (1T)-R(1)) -

By -fiy

«(sin I-u) + |ul-|ul

il

-y, (1) (0 (1) -2 (1)) (5-84)

But
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a an
e _2_,2_24t _ 2 <_1_>—_ -
Vo @y, T Ve wm ax, - Y2 M\TD) T YoM (5-85)
1 1 2
Therefore
ar, dk
i) e
Il Vly,=1

where the last inequality follows from Fig. 3-18. Thus ﬁB > HB which
is a contradiction of lemms 3-4. The proof of theorem 3-3 is complete

once we verify lemma 3-L.

+
PROOF OF LEMMA 3-4: Given the points S on I’ and R on a fixed

P-curve (See Fig. 3-17 or 3-16) to be first and second switching points
for some P-0-P pseudoextremal, we first must express the Hamiltonian
HB in terms of the points S and R. Next we must find the variation
in HB; namely, SHB as the points S and R move to S8' and R' of
Fig. 3-15.

From appendix C we have the expregsgion for the adjoint Xé(yl)

along the O-arc from Vs to MAPK
A y
2 1 1
Vos Vg Y2(0)

where ye(O) denotes the coast trajectory through the point S and

is explicitly

yg(c) = -[2(cos o-cos yls) + ygs]l/2 (3-88)
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Since 8 and R are switch points

A
M(Fy ) S h, =1 (3-89)

A
M(yp) S, =1 (3-90)

and equation (3-87) evaluated at R becomes

y
1= ygr[——l—- + f r L1 dcr] (5-91)

Y. 3
2s ¥, Yp(0)
from which
S
J v
HB - y2r 2s (5_92)
1r 5l ao
Vg Y(0)

We now seek the first order variation SHB of the backward time

Hamiltonian created by a variation ©8 of the first switching point

+
8. We require that S' =8 + 08 remain on I' . Thus
2 2
2s 23
=2 - == 4 - I -y! -
5 = 5 teosyymeos vyt ALy vy ) (5-93)

or for first order variations

VoTpg = (Amsin ¥y )8y, (5-94)

Also we require that the second switch point R remain on the given

P-curve. This means that
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y'2 y2

2r 2r
r— 2 — - L N s | -
5 5 cos yy.. - o8 ¥ A(ylr ylr) (3-95)

or as before the first order variations satisfy

y2r6y2r = (A-sin ylr)Sylr (5_96)

We now look for some relation between Sylr and Syls- The points S

and R are on an O-arc and thus

y2 y2
2r 2s
—— = e— ] - -
5 5 COS ¥y, = COS ¥, _ (3-97)
or
y2r6y2r - yESayés - sin ylraylr T sin ylsayls (5_98)

Using (3-94), (3-96) to eliminate 8y,,. end Sygs from (3-98) we ob-

tain the desired relationship

By, = Y, (3-99)

+
s0 that the given P-curve and zero trajectory I' are in fact parallel.
We now are in a position to compute the variation SHB taken as pre-

scribed by lemma 3-4%. From (3-92)

w0 g T UL

yls o yls yE(

(= - 2 os)

yls

(3-100)
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or using (3-92)

. Yor Jog Vs a(9)
HB ) er
./. 51 ao
T1s v5(0)
But
(gin y,_-A)

T

2r 2s 2r

or using (3-99)

i -4 si ~-A
6(1 ] l>=[(smylr )_( n oy, )]5yls

y2r yES.

Also we have

y .
1r 1 1 1
5(./‘ 5 d°> =S T S Wt
(o) ¥

yls y2 Yop 2s
y
+~/ﬂ ir 6(—3;——>10
NS A )

Using (3-88) we find that

i +
[2sin ylsgyls 2y256y2s]
2y,(0)

by (0) =

87
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(3-102)

(3-103)

(3-104)
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or with the aid of (3-94)

8y, (0) = (3-106)
2 yQZO'S . A
and (3-104) can be rewritten as
Y Y
([ e o[22 [ e, G
I1sg y?(c) Jor Jog I1s yE(U)

Putting these results together (i.e., combining (3-101), (3-103), and
(3-107)) we finally obtain the variation in HB due to the variation

8S as prescribed by lemms 3-4.

o (-Hgtsin y, -A) ) (-Hp*sin y, -A) .
iy 3 3
y2r y2S (5—108)
]
v Sy
+5%Af 1r 51 dUJ : 1s
Sy ¥pl9) g
do
T1s YZ(O')
This may be rewritten by using (3-1) as
A A
| Car Tas 11 )
oy o[ - (- 2
y2r yES y2$ y2r
(3-109)
fylr 1 )] oY1
. ac -
PG R S
s y5(0)

Since the integral of the denominator is always negative as Yo is

negative, our goal is to show the term in brackets to be positive
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along P-0-P pseudoextremals./ If this is true then

BH, < O (3-110)
for the restricted variations of lemms 3-4; namely, for

6yls >0 (3-111)

To determine the sign of the bracketed term of (3-109) is yet an awesome
task. If we first note that

fylr A __(l _i_ 4o = fylr h_giri_?: ao (5_112)
2 49\ 537 (o) (o)
yls y2 yls y2

and using (3-1) and the fact that we are integrating along an O-arc we

have

ao (3-113)

{ +
fylr Mot T fylr B Yo

T1g yZ(c) Vg yZ(U)

Now integrating by parts the left hand side of (3-112)

fylr hotte T DS T _fylr 1 Mo
" i 5
A 5v209) |y, Ty, 3v5(0) (-y,()
(3-114)
Y 1 1 V1r M2
Yor Yog Y1s 2

By now combining (3-113) and (3-115) we get finally
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V.. - V.. MY
1 1 1r do _ _ 1lr _1°2 _
<= - = + 30, = -2 f —== 4o (3-116)
Yog  Jor

> >
e Y2(9 V1 Y2

Now the bracketed term of (5—109) may be somewhat simplified to

A A Y. Ay, A
[3-109] = =& - 28 _op [T 22 4o L 4 gy ) (3-117)
2 2 (o) 2 1r
Yor y2s I1s y2 y2r

where (3-117) defines the term F(ylr), which is a function of the

. . 2 .
second switch point (ylr’yEr)' Now the term hlr/yér is always non
negative since R is an O-P corner. It is sufficient to show (see

Appendix E) that

F(y,,) >0 (3-118)

to guarantee that the bracketed term of (3-109) be positive. And

therefore,

SH_B <0 for ayls >0 (3~-119)

which is what we set out to prove. With lemma 3-4 now verified, the
proof of theorem 3-3 is also complete.

The purpose of this rather tedious development has been to structure
the pseudoextremals via theorem 3-3 so that we can construct the locus
of third switching curves of a P-0-P-0 pseudoextremal. Finally, we
then hope to construct the complete fuel-optimal time-varying feedback
control law by exhibiting all the switching curves. With this aim in

sight, we find the following corollary of theorem 5-3 to be of pertinence.
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+
COROLLARY 3%-2 If point 8 on I' and point R on a fixed P-curve

are first and second gwitch points of some P-0-P-0-.++ pseudoextremal,
then the mapping T of the ¥y coordinates of the points Q into the
interval [0,x] wvia the backward time of the third switching is a
monotonically increasing function.

The proof is apparent from Fig. 3-15. Theorem 5-35 has structured
the pseudoextremals as shown by the figure. If T(.) denotes the
time required to zero the point (+) along the unprimed trajectory

0-8-R-Q@ and T'(+) the time along the primed trajectory, then
T'(Q") < T(Q") (3-120)
as the primed trajectory lies below the unprimed. But also

7(Q) = 7(Q') + time from Q to Q' (3-121)
and so
7(Q") < 7(Q) (3-122)

as asserted by the corollary. Furthermore, we note that the mapping T
is continuous. The mapping of the points Q into the points S can
be seen to be continuous in the development of theorem 3-5. Since the
mapping T can be written as a continuous function of the points S,

R and Q3 namely,

V1s 71 d
7(Q) =f a2 75 +f i 12 . SE *

0 [2(cos o-1+A0)] Yeg y25+2(cos o-cos ¥,

A
+flq ——7—7“ (5-123)
_y2 O'

ylr
o1



and since S (and hence R also via (3-97)) depend comtinuously on
Q, the mapping T 1is continuous. This result holds equally well for
any set of third switch points @ and is not restricted to only those
points Q on a fixed P-curve. Therefore the locus of the third
switching points Q for a particular time TQ of switching is a

continuous curve in state space and a surface in the cartesian product

space ylx y2X Te

CONSTRUCTION OF THE THIRD SWITCHING ISOCHRONE FOR P-0-P-O TRAJECTORIES

From Fig. 5-15 we note tha£ for a pseudoextremal solution the third

switching Q must occur after the second switching R, i.e.,

> -
X4 2 ¥y (3-124)
For every P-curve of 3-16 there is one point for which @Q = R

X, =X (3-125)

corresponding to an adjoint XE behavior of Fig. 5-19. The locus of
these points in state space for varying P - curves forms a boundary
limiting the region for which an O0-P corner can occur. In Fig. 3-19
we have the behavior of the adjoint Xg(T) at one such Q = R point.
For a second switching to occur to the right of this point (an O-P
corner) the adjoint X2(T) would have to lie below X2(T) in which
case as seen in Fig. 5-19, the O-P corner would not occur. Fig. 3-20
illustrates this boundary beyond which an O-P corner does not occur

for our region of investigation -3n < x, < 3w. See (5-76) and Fig. 3-19

1
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Fig. 3-19. Behavior of Adjoint XE(T) Generating Boundary of O-P
Corner Region gt which Switchings R and Q Coincide.

of 7 2r Ly
I
r+

Fig. 3-20. O-P Corner Region Bounded on Right by Q=R Curve.
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T-BANG-COAST ISOCHRONE

—27‘,’—

._37Tr_
C
Fig. 5-21. T-Third-Switch Isochrone BC Partitioning Region Within
T-Bang-Coast Isochrone. Curve AB 1is the Q=R Curve of
Fig. 5-20.
0
c %
Fign 5"22.

Limiting Behavior of Adjoint A, Generating

a Third Switching at the Point® ¢ on I,
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N

for verification. With T the time remaining to reach the origin
specified, we anticipate the result that the locus of those third
switching points that occur exactly at backward time T (the T-third-
switch isochrone) partitions the region bounded by the T-bang-coast
igochrone and the zero trajectory Ii. In Fig. 5-21 point B, the
intersection of the third switching locus and the T-bang-coast iso-
chrone, lies on the time invariant Q = R curve of Fig. 5~20 and
corresponds to the limiting adjoint behavior of Fig. 3~-19. Point C

of the Fig. 5-21 which is the intersection of the third switching curve
and the zero trajectory l"+ must represent both a three switch (P-0-P-0)
trajectory and a P +trajectory coincident with Ii up to the point C._

The behavior of the adjoint A corresponding to a pseudoextremal for

2
this point C is given in Fig. 5-22. At long last we are ready to
congtruct the time-varying fuel-optimal control law for our nonlinear

system. As an application of theorem 3-3 and the above we now have

OPTIMAL CONTROL IAW 3-2. Any state (Xl’xg) regiding within the region

bounded by the T-bang-coast isochrone and the T-third-switch isochrone
at time-to-go T has control u(t) equal zero.

PROOF: By lemma 3-5 and theorem 3-2 we are dealing with a P-0-P-0
trajectory or a portion thereof. The control is therefore either O
or +A for a state within the region of congideration at time-to-go T.
If the control is zero no further consideration is needed. Suppose on
the contrary it were +A. Then the pseudoextremal would have to be of
type P-0-P. From Fig. 3-23 where path OSRQ 1is that pseudoextremal

for a point 'Q initially upon the T-third switch isochrone, the only
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T ISOCHRONE

}
X,
Fig. 3-25.

Pseudoextremal Path (OSRQ) for Zeroing State Q Belonging
to the T-Third-Switch Isochrone at Time-to-go T.

The
P-0-P path O8'R'X is not a pseudoextremsl.
0 ? | g ‘x1
|
/
/
/
/
-2 / T-THIRD-SWITCH
ISOCHRONE

Region (Shaded) of Optimal Control
Law 3-3 Having Control u = +A.
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way a P-0-P extremal for the point =x can meet the time constraint
is via a path OS'R'X. But this is impossible in that it would con-
tradict theorem 5-3 as illustrated by Fig. 3-15. To be in agreement
with theorem 3-3 path OS'R'X of Fig. 3-23 would have had a P-0 corner
between R' and Q.

We now illustrate the trajectory traced by the phase point

(xl(t),xz(t)) for an initial disturbance (x ) belonging to

107 %20
the region bounded by the Tf-thirdrswitch isochrone and the Tf-bang—
coast isochrone, where Tf ig the time allowed for zeroing the distur-

bance. With t denoting the time that has lapsed since we began zeroing

the disturbance, the time-to-go T satisfies

T = T, (3-126)

Referring to Fig. 3-25, as long as the state (xl(t),xg(t)) belongs to
the region bounded by the T-third switch and T-bang-coast isochrones
the control remains u(t) = 0. As the phase point proceeds along an
O-arc toward the boundary of this region, the boundaries themselves
are shrinking toward the origin. The control remains wu(t) = O wuntil
the phase point (xl,xg) intercepts the T'-third-switch isochrone at
which time the control switches to wu(t') = *A. The phase point con-
tinues along this P-arc until colliding with the shrinking bang-coast
isochrone at time-to-go T''. At T"' +the control switches again to
zero and the phase point 'rides' the shrinking T-bang-coast isochrone
to the origin by following an O-arc to l"+ and then the P-curve to

the origin. Note the u =0 region of Pig. 3-6 disappears when the
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Fig. 3-25a. Optimal P-0-P-0 Paths for Zeroing State X Within Time
T_.. The dashed portion is yet to be traversed while
the solid arc is that alreacy traversed.

-3
N
3

3,7

_xz

Fig. 3-25b. State X intercepts boundary of u = O control region; namely,

T' ~third-switch igochrone at time-to-to T' and control
switches to +A.
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Q

Fige. 3-25c. State X continues along P-curve until colliding with
shrinking bang~coast isochrone.

I" Tlll

I+

Q

Fig. 5-25d. State X meets shrinking bang-coast isochrone at
time-to-go T™ and control switches to zero.

99



time-to-go becomes so short that the T-controllable region lies between
Xy = + 5n/2. We now are ready to attack the region bounded by the
T-third-switch line, T-bang-coast isochrone, reflected zero trajectory

+ +
I, and zero trajectory I'. See Fig. 3-2k.

OPTIMAL CONTROL IAW 3-3. Any state residing within the region bounded

+ +
by T-third-switch isochrone, T-bang-coast isochrone, I&, and I' at
time-to-go T has optimal control wu(t) = +A.

PROOF: We need only show that

w(T) # 0 (3-127)

for this region at time-to-go T. Suppose u(t) were zero for some
state X oresiding in this region at time-to-go T. Then the state
would have either a P-O or P-0-P-0 pseudoextremal as its optimal
path for being zeroed within time T. But a P-~0 trajectory arrives
too early by definition of T-bang-coast isochrone. See Fig. 5-27.
Furthermore, it is not an HB = 0 pseudoextremal (see Fig. 3-2) and by
corollary 5-1 cannot be optimal. Iikewise a P-0-P-0 pseudoextremal
OSRQX as shown in Pig. 5-27 would arrive early‘and cannot be optimal.
To demonstrate that this 1s the case requires additional effort. To

begin we assert analogous to corollary 3-2 the following:

COROLIARY 3-5. If the set of points @Q along some portion of an O-arc

represent third switching points for some P-0-P-0 pseudoextremal,
then the mapping 7T of the Xq coordinates of the points Q into the
reals via the backward time of the third switching is a monotonically

increasing function.
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Thus along each such O-arc we may associate a unique time of third
switching. See Fig. 3-26. Corollary 3-3 is verified by first noting
that as the time-to-go T decreases the third switching point @ moves
continuously up a given P-curve as seen in (3-122) and (3-123). Because
each such P-curve intersects the said O-arc in exactly one point, only
one value of the time of third switching is associated with any point
Q of the P-arc — i.e., the mapping 7T is a function. To demonstrate
that the function T(.) is monotonic consider the points X of Fig.
3-27 belonging to that portion of an O-curve bounded by the T-third-
switch and T-bang-coast igsochrones which are to be zerced in exactly
time T. TFrom control law 3-2 each such X has a third gswitching Q
somewhere on this arc. Now X, switches at Ql and X2 at Q2.

1

Assuming we must meet the time constraint T exactly (i.e., we are not

f
on an HB = 0 pseudoextremal) then the mapping of the points X of

that portion of the O-arc between Xl and X2 into that portion between
Q2 and Ql via the third switching point Q 1is one to one and onto.
For if this were not true, distinct states Xa and Xb on an O-arc
would both have the same third switching point Qa along pseudoextremals

requiring exactly time T to reach the origin. But since Xa spends

£
less time than Xﬁ in reaching point Q two different third switching
times T(Q) must be associated with a single point — contradicting the
fact that such a mapping T(:) is a function.

With the aid of Fig. 53-27 and the fact that the mapping of the
points X dinto the points Q 1s monotonic and continuous we complete

the verification of corollary 3-3. Letting T(Xi,Qi) denote the time
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Fig. 3-26. Illustration 1 of Corollary 5-3. The mapping T(Q) of the
third switch points § belonging to the same O-curve of a
P-0-P-0 pseudoextremal is monotonic. T(Ql) < T(Qg) < T(QS)-

-2

J
-X,

Fig. 5-27. TIllustration 2 of Corollary 5-3. The mapping of the x. x

of an O-arc into the Q,Q, portion via the third switchl 2
. 2 } :
point of a pseudoextremal is one to one and onto.
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spent as state X, moves to its third switch point Qi and T(Qi)

denote the time of the third switching we have for each Xi
+ T = -
©(Q;) + 7(x;,Q;) = T, (3-128)

But the time T(Xi’Qi) for state X, to coast to switch point @Q,
along a pseudoextremal is a monoctonic decreasing function of the
abscigsa of the point Qi because the distance between the points X
and Q along the O-arc as a function of the abscissa of the point Q
is monotonic as seen in Fig. 3-27. Therefore T(Qi) is monotonically
increasing as asserted.

Using corollary 5-5 we can now eliminate any P-0-P-O pseudoextremal
from consideration and thereby complete the proof of optimal control
law 3-3. From Fig. 5-27 any P-0-P-0 pseudoextremsl switching at Q,5
with starting point X < Xl’ must arrive too early. Furthermore, it
can not be an Hﬁ = 0 pseudoextremal beqause theorem 5-5 and lemms
3-4 guarantee that the third switching point of such a pseudoextremal
must be below that third switch point of any third switching locus
belonging to the same given P-curve. Such a trajectory can not be
optimal and therefore optimal control law 3-5 is esgtablished.

We now illustrate the P-O0-P +trajectory traced by the phase point

(xl(t),x2(t)) for an initial disturbance ( XEO) belonging to the

*10?

region bounded by the Tf-third—switch and T.-bang-coast isochrones and

£

+ -+
the fixed curves I' and Fﬁ. The time specified for zeroing the

initial disturbance (xl is T_.. Referring to Fig. 3-28a,b,

0¥p0) 18 Ty
c,d as long as the state (xl(t),xg(t)) belongs to the region
bounded by the T-third-switch and T-bang-coast isochrones and the
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Pig. 3-28a.

Optimal P-O~P Trajectories. Path 0,S ,Rl,Xa zeros
state Xa. early but nonetheless optimaily. The dashed
portion is yet to be traversed while the solid arc is
that already traversed.

- x2

. -+
Fig. 3-28b. State Xa reaches curve T Tt ahead of the shrinking

bang-coast isochrone and control switches to zeroc.

104



Fig. 3-28c. State X, collides with the shrinking bang-coast

isochrone before meeting F§ and control switches
to zero.

Fige. 3-28d. State X, arrives early at origin; state Xp rides shrink-
ing bang-coast isochrone to arrive at time Tf-
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curves r and I; (T is the timé—to-go) the control remains
u(t) = *A. The phase point proceeds along a P-arc toward the boundary
of this region until either meeting the fixed line Ii or colliding
with the shrinking T-bang-coast isochrone. The first case illustrated
bj the point X = in Fig. 3-28 corresponds to an Hy = 0O pseudoextremal.
The phase point Xa is always ahead of the shrinking bang-coast
igochrone and arrives at the origin early. In the second case the
initial disturbance was too far from the P; switch line to reach that
line before being intercepted by the shrinking bang-coast isochrone.
Here Xb proceeds with control u(t) = A until time-to-go T" at
which time the control switches to zero. Thereafter the phase point
'rides' the shrinking bang-coast isochrone to the origin.

We conclude our development with the fuel optimal feedback control
law for the remaining shaded vregion of Fig. 3-29a.

OPTIMAL CONTROL IAW 3-4. Any state residing within the region bounded

by the T-bang-coast isochrone, I; and Iﬁ at time-to-go T has
optimal control wu(t) = O.

PROOF: That no P-O-P+++ trajectories may occur within this region
was deduced in lemma 3-1b. We need only consider the possibility of a
P-0-N trajectory, i.e., the control being u(t) = -A within this
region. But any peint within this region can be zeroed within time T
by a P-O trajectory because of the definition of the T-bang-coast
isochrone. Inasmuch as a P-0-N trajectory would zero a state faster

than a P-0 trajectory, such a path must arrive too early. Furthermore,
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’ +
for T < n the bang-coast isochrone lies below the curve T (reflec~
1

tion of the zero trajectory about the ¥y or X axis). From Fig.

1
3-2 such pseudoextremals are not HB = 0 extremals. Corollary 3-1

prohibits these P-0-Ne.. paths from being optimal beéause they do
not meet the time constraint exactly.

We now illustrate the P-O trajectory traced by the phase point
(xl(t),x2(t)) for an initial disturbance (XlO’XEO) belonging to the
region bounded by the time dependent Tf-bang-coast isochrone and the
fixed F; and l"+ curves associated with optimal control law 3-k.
Referring to Figs. 3-29a,b,c,d as long as the state belongs to the
region just described the control remains u(t) = 0. But the phase
point always will belong to this region until reaching the zero trajec-
tory F+ at which point the control switches to +A. All states
lying upon the Ifbang—coast isochrone, such as state Xa’ ride the
shrinking bang~-coast isochrone to the origin. Other states such as
Xb and Xc are within the TfJbang—coast igochrone initially. Since
they follow P-=0 trajectories they arrive at the zero trajectory ahead
of the shrinking isochrone. There the control switches to +A and the
phase points continue along the zero trajectory arriving at the origin
in a time less than Tf.

By assemblying optimal control laws (3-1), (3-2), (3-3), and (3-4)
we now have the complete time varying feedback control law for any state
within the T_-controllable region. The only restrictions we have had

f

to impose are

107



T¢

Tf—MlNIMUM TIME ISOCHRONE
R'li._— BANG-COAST ISOCHRONE

27 3w

X,

\

-2m

Figo. 3-29a. Optimal P-O0 Trajectories. Paths 0,8.,X ; O,S2 H 0,85,15(c

are all optimal for a specified time of "gsolution Tf.

0 s 2m 3

-X,

Fig. 5-29b. All states initially within this region
follow O-arcs to IT.
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Fige 5-29c. Both X, and X will arrive at origin early whereas

. C, .. . .
Xa 'rides' shPinking bang~coast isochrone to arrive
on schedule.

+ + . .
Fig. 3-29d. X_ reaches I} moves along I' j Xa will arrive
at O in precisely time 'I'f.
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1) T.< 3 +arcsimh 1 (3-129)

and that the T _.-controllable region be limited by

f

2) -3m < x) < 3w (3-130)

The complete control law is shown in Fig. 3-30.

Restriction (3-129) was imposed in order to limit any pseudoextremal
candidates having both P  and N-arcs to merely a P-O-N trajectory.

We note that in the proof of theorem 2-2 we have a lower bound on the
time Tf for which a longer sequence P-0-N-O+++ or O0-P-0-N++- could
occur if it were in fact a pseudoextremal. Because ﬂ/2 + grcsinh 1 is
a lower bound we might well expect the results to hold equally well

for times as large as 1. No pseudoextremals were found using digital
computer simulations to contradict this expectation. The lower bound

of ﬁ/2 + arcsinh 1 1is certainly too strong a bound inasmuch as it
arose from the consideration of a minimum time of solution — a time
limit which was lowered gtill further via the introduction of a reduced
broader problem in appendix B. No alternate proof was found which would
raise this power bound even though the infinium of times for which a
P-0-N-O0 pseudoextremal could occur probably is at least =.

Restriction (3-130) enabled us to limit our consideration of
P-0-P-0-++ vpseudoextremals to a sequence P-0-P-0 or a truncation
thereof. If one now recalls the actual earth pointing satellite problem
wherein the x coordinate is driven to some integral multiple of U4,

1

the desirability of being able to zero the initial state (2%,0) becomes



bx

-3-%1 = 3 suegsur eus oz
we Toaquop yoeqpeed Tewrsdo Tond

—3INOYHIOSI HOLIMS-QYIHL-1

INOYHOO0SI
1SVOD-ONVE ..hl\

*0¢-¢ *8Td

|hh".l

3

-t k“m

INOYHDOSI IWIL-WNWINIW-1

111



spoqosuuoo ATdWTS ST UOTUM Yl Aonov Moge UOTIdI STQBTTOILU0O~T, 94l 01 sJuoTeq

(0fxg) eoutg . °(0fusy) SIUTO4 U3 INOQe SUOTISY STYETTOIUOd-T, dYF 0% UOTUn °*T¢-¢ *BTd

INOYHOOSI
IWIL-WNWINIW -1

L 1NOYV INOYHOOSI
IWIL-WNWINIW-1

112



apparent. For if this state (2%,0) is within the Tp-controllable
region, the T.-controllable region about (kn,0) will overlap the
Tf-controllable region about (0,0). The union of all such T-control-
lable regions about the points Ukrx on the X4 axis will then form a
simply connected region. We therefore can control any pitch angle within
time Tf provided the pitch velocity is not excessive; i.e., X, lies
within the envelop of these Tf-controllable regions. See Fig. 5-31.

Unfortunately the requirement that the T_-controllable region lie

f
between the lines x, = * 3% (3-130) excludes the point (2m,0) from
the Tf-controllable-region. Should we adhere to (5-150) then there
would be holes of uncontrollability within the union of such Tf-
controllable-regions corresponding to states we are unable to drive to
(4xn,0) within time Te+ 1In Chapter IV we abandon restriction (3-130)
and admit P-0-P-O+<+ gsequences with more than three switchings. In
so doing we will also leave our theorem-proof type‘format and generate

these more complex switching surfaces on the digital computer always

taking advantage of the structure already developed in this chapter.

115



CHAPTER IV

In this chapter we remove the requirement that the T-controllable

= -3 and xl = +31 to

which we sdhered throughout chapter ITI. In go doing we no longer may

region always be bounded by the lines Xq
exploit lemms 3-3 to limit cur consideration of P~0-P-0O-... pseudo-
extremals to those with at most three gwitchings. In fact, as we shall
see, for a control bound A =3 and time of mission Tf = %, we may
have as many as five switchings on such a pseudoextremal. Thus the
control law for the region bounded by the T-bang-coast isochrone and
zero trajectory becomes much more complex than before. We content our-
selves with the generation of the switching curves by a computer program
which exploits the structure of theorem 5-3.

As before we consider only those backward time pseudoextremals
beginning with a P-arc since identical reasoning yields analogous
results for those pseudoextremalg having control initially -A. Further—
more, we now relax the time Tf allowed for solution from n/2 + gresinh 1
to .

Whenever we still limit the maximum time of golution to x/2 +
arcsinh 1, the control law for the region bounded by the upper T-minimum
time isochrone and the T-bang-coast isochrone remains unchanged; namely
u(t) = -A. However, we shall assume that this control law remains valid
for times T as large as w«. No contradictions were found while
generating P-0-N pseudoextremals on the digital computer. Furthermore,

as already discussed, the time restriction ﬂ/2 + arcsinh 1 for
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excluding the occurrence of P-0-N-P pseudoextremsls was too strong.
Optimal control law 3-1 certainly remains valid for times T greater
than ﬁ/2 + gresinh 1 and most likely even for times T larger than
. Theorem 3-2 continues also to provide the optimal control for
those states belonging to the T-bang-coast isochrone, namely u(t) = 0,
provided the control magnitude A satisfy equation (3-57). Our task
then is to determine the new feedback control law for the region
bounded by the T-bang-coast isochrone and the zero trajectory F+. Ifr
we first relax the previous constraint on the T-controllable region to

the constraint
Sn-n/2 <y, < Bqtn/ 2 (4-1)

obvioug extension of lemma -3 yields the result that an alternating
P-0 type pseudoextremsl has at most four switchings. The optimal
control law for times large enough to permit the T-controllable region
to extend beyond the line ¥y = 3n  yet not beyond the line ¥, = 5ﬂ+ﬂ/2
is given in Fig. 4-1. Whereas before the T-third-switch isochrone
extended from the T-bang-coast isochrone all the way to the zero trajec-
tory P+ and thereby partitioned the region within the T-bang-coast
igochrone, the T-third-switch isochrone (TIT) now only extends to the
point B of Fig. 4-1. If we define a T-fourth-switch isochrone to be
the locusg of fourth switchings of a P-0-P-0-P pseudoextremal which
occur exactly in backward time T, then the T-fourth-switch isochrone

‘joins the T-third-switch isochrone (IIT) at B and links back to the
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T-bang-coast isochrone as shown in Fig. 4-1. It is these isochrones
end to end that now isolate one section of the region within the T-

bang-coast isochrone. For this section we have:

OPTTIMAL CONTROL IAW 4-1. If a state (xl(t),xg(t)) resides at time-

to-go T within the region bounded by the T-third and T-fourth-switch
isochrones and the T-bang-coast isochrone the optimal control is
u(t) = 0.

As in chapter III, the point A must simultaneously represent
both a second and third switching since it belongs to the T-bang-coast
isochrone and the T-third-switch isochrone. In Fig. 3-19 the limiting

behavior of the adjoint A, for such a point was illustrated. Further-

2
more, the Q = R curve, which is the locus of points at which the
second and third switchings coincide, is a fixed curve in state space
beyond which an O-P corner did not occur. In Fig. 4-1 as throughout
this chapter we give the Q = R curve the more suggestive name 152
to indicate the limiting case where the third and second switchings of
a P-0-P pseudoextremal coincide. As the time-to-go T decreases, the
T-bang-coast isochrone shrinks and the point A, which is the intersec-
tion of the T-third-switch and T-bang-coast isochrones moves along the
curve L52.

For -3n < % < +3n  the second switchings of a P-0-P type pseudo-
extremal were limited to a region bounded by F:, Q@ = R curve, and
the zero trajectory as shown in Fig. 3-20. Fbr %X, > 3% a sgecond such

1

region emerges consisting of second switch points of some P-0-P
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Fig. 4-1. Emergence of T-Fourth-Switch Isochrone. Shaded regions have
optimal control u =,0, The T-Third-Switch Isochrone no
longer extends to I' ,
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pseudoextremals. See Fig. 4-2. Thé boundaries of this region are
labeled Iﬁ—;z and L52 for reasons yet to be developed.

The notation Lij (i=3+1) designates the locus of phase points
'(xl,xa) where for some P-0-P pseudoextremsl the 1i-th and j-th
switchings coincide. The integer i represents the highest nunrbered
5 equals the

switching value +1 and is in addition at a relative minimum or maximum.

switching under consideration. At Lij the adjoint A

Since the adjoint XE falls to cross the switch line hz =1 at a
point on Lij’ the i~-th and j-th switchings do not occur in the limit.

In any neighborhood of Lij the i-th and j-th switchings are present.

The notation Li—aj (i=3+2) designate the locus of points (xl,xz)
in state space for which an i-th switch P-0-P-... pseudoextremal
degenerates into a j-th switch P-0-P type pseudoextremal. At Li—aj
the adjoint kg again equals the switching value +1, but h2 is.no
longer at a relative maximum or minimum on I&—aj' Instead a relative
maximum or minimum with k2 = 1 occurred prior to the j-th switching
and eliminated two switchings as in Fig. 4-3.

The behsgvior of the adjoint ie corregsponding to a P-0-P pseudo-
extremsl with second switching on the boundary Lh—ae is given in
Fig. 4-3. The adjoint Xg is really a limiting case of that A,
behavior shown in dashed lines. The point of tangency T corresponds
to either two switchings or in the limit zero switchings. At R then
in the limiting case a four switch P~0-P-0-P pseudoextremal degenerates
‘into a two switch P-0-P pseudoextremal. The locus of all such points

where the second and fourth switchings coincide we designate Lh—az in

accordance with our previous notation.

118



\ /—- K=1 O-CURVE

T- BANG COAST- ISOCHRONE

—71‘ =
Fig. 4-2. Upper and Lower Regions of Second Switchings
of a P-0-P Pseudoextremal. The boundaries
of these 0-P corner regions are time invariant.
)”2
)
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0 T T’ S R R

Fig. 4-3. Adjoint A, Generating a Second Switching R at

the Lh—ag Boundary. The corresponding trajec-
tory is given in Fig. k-h.
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That the line Lh—ag must be the boundary of our second switch
region is deduced by the following argument. Suppose a second switching
R' could occur along the path OSR of Fig. 4-2 for R' < R. Then the

adjoint Kg generating such a switching would have to be as shown in

A

Fig. 4-3. It could not cross the Xz curve between T and S by

reasoning analogous to the proof of theorem 3-5. Consequently an
earlier switching from O to +A would have occurred'contradicting
the assumption that R' 1is the first O0-P corner.

The furthermost boundary 1%2 of this lower first O-P corner
region is the locus of those points for which the second and third
switchihgs coincide. The prime distinguishes this curve from the
previous L boundary of the upper first O-P corner region. dJust

32

as the line L52 was a boundary beyond which the second switching R

(first 0-P cormer) could not occur for x., < 3n (see 3-130), the line

1
L%E is a boundary beyond which the first O-P corner can not occur for
X, < 5n. The verification proceeds identically as that in the earlier

result. The adjoint A generating such a P-0-P pseudoextremsl in

2
which the second and third switchings coincide is shoﬁn in Fig. 4-k.
The method used to generate the L4_>2 line on the computer is
suggested by Fig. L3, We integrate the backward time system equations
(2-2) and adjoint equations (2-7) using control law (2-5) from some

particular initial conditions until an O-P corner occurs. The initial

conditions are suggested by (3-71) and Fig. 4-3; namely,

n <y, S 3n/2 (4-2)
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Fig. b-k. Adjoint he Generating a Second Switching R at the L52
Boundary of the Lower First O-P Corner Region.

Fig. 4-5. Procedure for Adjusting Xls to Generate the Curve L52.
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2
Yoo = ~(cos yio-l+Aylo)1/ (k-3)

(4-4)

>
il
|

M. =0 ' (%-5)

The far boundary 1%2 is generated by integration of the system and
adjoint equations from the initial conditions as given on the switching

+
from the zero trajectory I' i.e., at S. Thus

_ ) 1/2 i
Y2S - -(COS yls 1+Ayls) (L" 6)
My, =1 | (4-7)
M o = negative constant to be adjusted (4-8)
Tis, = V15 = St/ 2 - (5-9)

where Vg is the smallest value of Yig for which a second switching
(o-P coran) occurred in the previous scheme for generating LA—»Q'

The scheme for obtaining Lé2 then is to be given an arbitrary switch
point S, and to integrate along the O-arc until an O-P corner occurs.

After the O-P corner is found, hls is reset so that

hls(new) < xls(old) (%-10)

and we integrate again until either K2 exceeds one or a relative
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maximum occurs. If the condition

xg > 1 (k-11)

occurs first, we continue the scheme. If a relative maximum occurs
first, we back up and readjust Xls to convérge on the limiting case.
The procedure is illustrated by Fig. 4-5. Referring to Fig. 4-6 we
have already seen that the point A moves with the shrinking T-bang-
coast isochrone along L52 as the time-to-go becomes less. Likewise
the point C of Fig. 4-6 designating the intersection of the T-bang-
coast and T-fourth switch isochrones must represent the degeneration
of a four switch pseudoextremal into a two switch pseudoextremal. Such
points as C must belong to I%~e2' As the time~to-go decreases,
the point C moves along Lu_>2 toward P+ with the shrinking bang-
coast isochrone as seen in Fig. 4-6.

The point B designating the junction of the T-third and T-fourth
switching isochrones similarly follows the curve 1%5 down to the zero
trajectory F+ as the time-to-go decreases. The adjoint behavior
corresponding to the coincidence of the third and fourth switchings is
given in Fig. 4-7. From chapter III, for T sufficiently small the
T-third switching locus rejoins the zero trajectory f+ and there can
be no fourth switching, i.e., the T-fourth switching isochrone disappearé.
Thus when B reaches F+, C simultaneously reaches P+ and is
coincident with B in order that the T-fourth switching isochrone vanish.
Therefore the curves LMB and. LH—)E intersect the zero trajectory at

a common point G as shown in Fig: b6,
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Fig. 4-7. Adjoint Behavior Generating a Point on the

L4 Curve for which the Third and Fourth
Switchings Coincide.

Fig. 4-8. Special Adjoint Solution Corresponding to an O-P
Corner at the Point G. Four switchings degenerate
into two via the first tangency; the four switching
coincides with the third at the second tangency.
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At this special point not only must the third switching be coineci-
dent with the second (152) but also four switchings must degenerate
to two (Lh_ag)' The special adjoint solution corresponding to this
behavior is given by Fig. 4-8.

We now illustrate a typical P-0-P-0-P +trajectory resulting from
our extended region of control by Figs. 4-9a,b,c. Only a state initially
within the u(t) = +A region, i.e., the unghaded region within the
T-bang-coast isochrone of Fig. 4-9a may experience four switchings.

Such a state X continues on a P-arc until meeting the oncoming T-
fourth-switch isochrone at which point a P-0 corner occurs. The state
now is within the wu = 0 control regioniand continues with control zero
until reaching the boundary of the shrinking T-third-switch isochrone.
The state then reenters the u = +A region and continues on a P-arc
until it intersects the shrinking T-bang-coast isochrone at which time
control switches to zero and the state rides the shrinking bang-coast
isochrone to the origin. The final portions of the trajectory as well
as the behavior of the control regions during these portions were
previously illustrated in Fig. 5-25.

If we now relax ‘I‘f still further so that now the Tf— controllable
region includes the point of intersection of the line L%z and zero
trajectory Ii, a third u= 0 control region emerges as shown in
Fig. 4-10a. ©Now the time is sufficiently long for the lower P-0-P
trajectories — those having O-P corners in the lower O-P corner region —
to have a third switching. Using a prime to distinguish these third

switchings from those of the upper region we have:
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T~ MINIMUM-TIME ISOCHRONE
7lr 27 3I7T

>X1

Fig. 4-9a. Four Switch P-0-P-0-P Trajectory of Optimal Control Law 4-1.
Dashed path is yet to be traversed whereas solid path is
that already traversed.
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Fig. 4-9b. State X collides with oncoming T-fourth-switch
isochrone (IV) at P and control switches to zero.

\
..x2

Fig. 4-9c. State X is coasting within the region
of optimal control law 3-2.
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OPTIMAL CONTROL IAW 4-2. Any state (xl(t),xz(t)) residing at time-

to-go T within the region bounded by the T-third-switch isochrone and
the T-bang-coast isochrone has optimal control wuf{t) = O.

The optimal trajectory for a state X Dbelonging to this region
at time-to-go T is illustrated by Figs. 4-10a,b,c. State X proceeds
along an O-arc until catching the shrinking T-third-switching boundary
at time Tl- The control then switches to +A. The state continues
along a P-arc until it collides with the shrinking bang-coast isochrone

at time T2 at which time the control switches to zero. Thereafter

the state merely rides the shrinking isochrone to the region.

THE OCCURRENCE OF THE FIFTH SWITCHING

In order that a switching occur at the point D, where the fixed
lines Lég and L4_>2 intersect, the second, third, and fourth switch-
ings of a P-O-P type pseudoextremal must simultaneously occur. (See
Figs. 4-6, 4-10a.) As the fourth, third, and second switching points of
nearby P-0-P +type pseudoextremals approach D, the associated
P-0-P-0-P, P-0-P-0, and P-0-P pseudoextremals degenenate to a P-0
pseudoextremal. The adjoint behavior generating such a degenerate
pseudoextremal is given in Fig. 4-11.

In gddition to the lines L and L4—>2 radiating from the

52

point D, the analagous lines and L L also emanate from that

I

o5=*3 >

point. The line L5_93, representing the locusg of those switch points
for which a P-0-P-0-P-O or five switch trajectory degenerates into a

P-0-P-0 or three switch trajectory, is shown in Fig. 4-14. The line
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y 1l
_x2
Fig. 4-10b. At time~to-go T, state X catches the shrinking

Tl—third—switchlng isochrone (III') and control
switches to +A.

[
-X,

Fig. %-10c. State X collides with shrinking bang-coast iso-
chrone at R at time-to-go T, and thereafter 'rides’
that shrinking isochrone to the origin.
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LS—ej is generated by merely exten&ing the pseudoextremals generating

Lh—»g up to the next switching point. The corresponding limiting
adjoint X\, is shown in Fig. L-12. As the relative maximum of o

(M in Pig. 4-12) approaches the value A, = 1, the corresponding

2

switching points of L5h approach D. On 15“ (Fig. 4-14) where the

fourth and fifth switch points coincide, the adjoint XE behaves as

1

in Fig. 4-13. As the relative minimum of My (M2 in Fig. 4-13)

approaches the value hg = 1, the locus L54 approaches the point - D.
Then in an arbitrarily small neighborhood of D there are switchpoints
representing a second, third, fourth, or even fifth switching for some
pseudoextremals consisting of alternating P and O-arcs.

From Fig. 4-11 the point D corresponds to the second relative
maximum of Xg. Reasoning as in lemma 3-35 yields the result that the

Xl coordinate of the point D—xlD satisfies

3+ /2 < X p < b (b-12)

It is only when the time-to-go T becomes so large that the point D
belongs to the region bounded by the T-bang-coast isochrone and zero
trajectory that a fifth switching occurs. In such a case the lower
two u =0 control regions rejoin to form a single region bounded by
the T-bang-coast, T-third switch, T-fourth switch, T-fifth switch, and
T-third' switch isochrones as shown in Fig. 4-14. For this region

we have:
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OPTIMAL CONTROL IAW 4-3. Any state (xl(t),xe(t)) belonging at time-

to-go T to the region bounded by the T-bang-coast, T-third switch,
T-fourth switch, T-fifth switch, and T-third' switch isochrones has
optimal control u(xl(t),xg(t)) = 0.

States initially belonging to this region have as optimal paths
either a three switch P-0-P-0 trajectory or a five switech P-0-P-0-P-0
trajectory. Any state within this region moves along an O-arc until
reaching the time dependent boundary of the region at which time a
switching occurs. Those states which meet the third switch isochrone
boundary (arcs AB and EF of Fig. 4-15) will be zeroced by a P-0-P-0
path. Crossing this boundary the control switches to +A and the
phase point continues along a P-arc until meeting the shrinking T-bang-
coast isochrone. Thereaftéer the phase point coasts along an O-arc
over to I‘+ and follows that P-curve to the origin. The upper trajec-
tory of Fig. 4-15 illugtrates the case where the phase point intersects
the boundary at the T-fifth switch isochrone. The state then moves
along a P-arc until meeting the oncoming T-fourth switch isochrone at
which time it re-enters the wu = 0 control fegion. By now the lower
u =0 control region of Fig. 4-15 has shrunk considerably and possibly
split into two regions as in Fig. 4-10a depending upon the time
remaining. The phase point then continues along an O-curve until
catching the moving third-switch isochrone boundary. The motion
thereafter has already been described by Fig. 3-25.

No state belonging to the region of control law 4-3 can intersect ‘

the boundary of this region at the fourth switch isochrone. The fourth-
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switch isochrone is moving to the left faster than the phase point is
moving along the O-arc.
Extending the result of lemma 5-3 we find that at most five switchings

may occur in a P-0-P type pseudoextremal whenever =x. 1is restricted to

1
the cylinder

-5 < x, < 5x (4-13)

1

If we adhere to the maximum time restriction

T < g + aresinh 1 (4-1k)

we have completely characterized the fuel optimal, time varying feedback
control law provided that the T-controllable region satisfies (4-13).
Moreover the T-controllable region may now satisfy restrictions (4-13)
and (4-14) and still include the phase point (27,0). To do this would

require the control magnitude A +to be sufficiently large so that

efﬁ a7 —2'[ﬂ ag <2 4 aresinh 1
0 Ixe(cj 0 [2(cos G—l)+2AG]1/2 -2
(4-15)
or evaluating numerically condition (4-15)
A > 4,57 (4-16)

Rather than insist that A be at least 4.57 times the maximum

gravitational torque, we shall replace (4-14) by
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T <1t (4-17)

in order that even smaller control torques will be sufficient to
guarantee that the phsse point V(2ﬂ,o) belong to the T~controllable
region. Our characterization of the fuel optimal feedback control law
is now complete provided Optimal Control law 3-1 continues to hold for
al}' T satisfying (4-17). All indications tend to substantiate the
claim that indeed Optimal Control law 3-1 remains valid for such T.
Instead of driving the state to the origin (0,0), we now seek
the optimal control law for driving the state to (47,0) with minimum
fuel expenditure. Because both the state and adjoint variables are
governed by differential equations (1-3) and (1-15) that are invariant

under the translation
X, = x, + lkn k integer (4-18)

or in backwsard time formulation

N

¥y = yq + bkx (¥-19)

the fuel optimal switching surface for driving the state to (4%kn,0) is
just the switching surface already derived translated Utks units in the
xl(yl) direction. Tnasmuch as the state (2x,0) is within the T-con-
trollable region centered about (0,0), the T-controllable region
centered about (Uw,0) will overlap that centered about (0,0) to

form a simply connected region. The union of all such T-controllable

regions will contain no holes of uncontrollable states; the feedback
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control law 1is given for all values of the pitch coordinaté. The only
restriction is that the pitch veloeity Xy must lie within the envelope
of these T-controllable regions.

From equation (1-10) the pitch error rate satisfies

0 = 0x (4-20)

where K is an inertial parameter of the satellite and §{ the orbital

3

angular velocity. From Fig. 4-16, for the control magnitude A = +3
and time of mission =, any state having velocity Xy less than
approximately = can always be controlled. Our control law can zero
any actual pitch error rate 6

/—5K5

2

6 < n (k-21)

within normalized time T = x or real time tf

g, = —E— (4-22)

T /:3igh
for the parameter A = +3. By increasing the magnitude of control torque
A  even greater error rates could always be zeroed while realigning the
earth-pointing satellite within the same fixed time tf.

Just as in equation (3-14) we may introduce a minimum cost function

T
V, (%x7,%,,T) = min 3] Iu(t)ldté (4-23)
u.euk 0

where G£ is the set of all admissible controls which transfer the

state from (xl,xg) to (Ukn,0) within time T. As before, k 1is
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an integer. Such a function is certainly continuous in all its argu-
ments. One would therefore expect that time dependent curves partition
the state space into segments within which it is more economical to
drive the state to the included point (U4ks,0) than any other such multi-

ple of U4x. Such curves are defined by the following:

DEFINITION 4-1¢ The Tlﬁ indifference curve is the set of all states

(Xl’X2) such that
vk(xl,xg,T) = Vk+l(Xl’X2’T) (k-24)

Any state lying on such a curve may be driven to (4ks,0) or
(4(x+1)n,0) with equal fuel economy. Such indifference curves are
shown in Figs. 4-16, 4-17, and 4-18 displaying the complete feedback
optimal control law for the actual earth-pointing satellite problem.
From symmetry arguments the point (4kn+2x,0) will always belong to
such a curve provided T 1is sufficiently large to allow such a point
to be controlled. Ag the time-to-go becomes less each such indifference
curve splits into two gsegments due to the enlargening hole developing
in the T-controllable region. These two curves gradually shrink and
finally vanish when the time T 1is so short that the T-controllable
regions centered along the % axis at multiples of Lkx no longer

overlap as in Pig. 4-18.
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CHAPTER V

COMPARISON OF THE LINEAR AND NONLINEAR OPTIMAL CONTROL PROBLEMS

Due to the technical difficulties encountered in the nonlinear
analysis of optimization problems, wherever an equation such as (1-1)
appears; éne frequently linearizes the equation and considers only
sma, 1l motions of the system. At times one may even apply the results
of such analysis to motions that are by no means small with the expecta-
tion of obtaining reasonable conclusgions for the nonlinear regime. The
results of both the linear and nonlinear plants are presented to indicate
how far one may extend the results of the linear analysis into the non-
linear region and still obtain good performance estimates.

The linearized plant dynamics are governed by
e) +x(t) =u  Jul <4 (5-1)

Again we seek an admission control wu(t) which transfers the state
from some known initial state (Xl(to)’XE(to)) to the terminal state
(xl(tf),x2(tf)) = (0,0) within a specified time T = to~t . The
solution of this problem is contained in Ref. [9].
The main differences encountered in the two problems are

i) Whereas the optimal control in either case is of
type bang-coast-bang, the linear optimal control wu(t) is a periodic
function of time with period =n. An optimal path consists of alternating

P and N-arcs separated always by an O-arc or a truncation of such a
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path should the time T be less than a complete periocd =n. In
contrast the nonlinear optimal control is not periodic. Furthermore,
optimal control sequences of type P-0-P-... where P (or N)-
arcs alternate with O-arcs are present.

ii) The number of switchings may be quite different. For
~'T < n the linear problem has at most two switchingé. The maximum
nunber of switchings that can occur for solution time T < n along
an optimal path for the nonlinear problem depends upon the magnitude of
the control bound A. For A equal 2 at most three gwitchings could
oceur as a P-0-P-0 (N-0-N-0) path is the longest sequence. In chapter
IV, it has been shown that for A équal 5 an optimal sequence could -
have five switchings. As A 1increases without bound one expects the
maximum number of switchings occurring for solution time = to also
grow without bound. In the limiting case the problem reduces to the

s

l/s2 plant:
¥(t)=u Jul <a (5-2)

which may have an unbounded number of switchings along singular arcs,
which arise for appropriate initial conditions as seen in Ref. [9].
iii) There may be big differences in the fuel required
to zero an initial disturbance within time T. In figures (5-1) to
(5-5) the fuel cost is plotted as a function of the initial state

variable x for different values of the other state variable x. .-

10° 20

The permitted time for the maneuver is T = .75% and the control bound

A=3-
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This value of T corresponds to allowing 5/8 of an orbit to
realign a satellite having the inertial parameter K5 = —1/5. Further-
more, such a value is representative of the times we have been consi-
dering; namely, times T less than #. Also the time T is sufficiently
large to allow zeroing of large disturbances so that we obtain good
contrast of the linear and nonlinear results.

The control bound of A =3 was selected to enable the zeroing
of the disturbance (27,0) within time = and thereby remove the
"holes" of the controllable region discussed in chapter IV. With this
bound on the control, any pitch error may be zerced provided the pitch
error rate lies within the envelope of the T-contrcllable regions.

The larger the control bound A the less fuel required to zero a given
initial disturbance within time T. Increasing the bound A on avail-
able control torque wu, while lowering fuel éonsumption, is not without
penalty. The larger weight requirement necessary to provide larger
control torques may significantly alter the satellite configuration
(inertial parameters) in addition to imposing rather severe restrictions
on the weight of useful payload. The fuel savings in zeroing the states
of interest of large A values is not suffiecient to Jjustify the extra
hardware. Furthermore, as presented later, the magnitude of errors

in fuel expenditure of a discrete time suboptimal feedback control law
increases as the control bound A increases. The value A = 3 where
the available control torque is three times the maximum gravitational
torque is a good compromise. Efficient zeroing of disturbances of

interest is achieved without undue control torgue requirements.
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The fuel cost curves are given only for negative values of x50

inasmuch as a reflection of that curve about the fuel axis gives the

fuel cost curve for the corresponding positive %50 value. In general
for a fixed value of Xgo there are zoneg for which the linear plant

exhibits greater fuel economy and zones for which the nonlinear plant
is more efficient. If X2O < 0, the nonlinear appears the more

economical when %10 > 0 and less economical for X0 < 0. The
greatest discrepancy between the optimal fuel prediction of the linearized
model and the actual optimal fuel requirement of the mnonlinear system
occurs for those values of X0 lying near either the linear or non-
linear T-minimum-time isochrone. Here a severe fuel penalty is paid
to meet the time constraint and the corresponding fuel cost curve rises
much more rapidly than the other fuel cost curve.

In Fig. 5-6, the importance of allowing as much time as is
reasonable to complete the earth-pointing maneuver to avoid such
extravagant fuel expenditures is further emphasized. As the time T
approaches the minimum settling time for the initial state (XlO’XEO)’

OF

the slope ST of the fuel versus time curve becomes infinite. If

P o= -V(x;00%,0,T) (5-3)

then the Hamilton-Jacobi partial differential equation (3-17)

%+H=o (5-4)

indicates that the Hamiltonian H becomes unbounded ag the fuel optimal

solution degenerates into the minimum time solution.
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At those points for which a switching occurs at time T, the slope
is discontinuous. To the left or right of such a corner the solution
to the Hamilton-Jacobi canonical equations exists and the slope is well
defined and continuous. In the example with (XlO’XQO) = (-2,2) shown
in Fig. 5-6 the Hamiltonian is zero to the right of the corner, and
ne reduction in fuel expenditure is achieved by relaxing the time con-
straint over the interval shown.

As one would expect, the results of the linear and nonlinear
analysis are less and less similar as the absolute value of x

20
increases. Finally, as shown in Fig. 5-5, no state with X5o = -4 can
be zeroed within the specified time T = .75% by the linear solution.
However, there is a surprisingly large region for which the linear

solution predicts the optimal performance of the nonlinear system with

good accuracy. For the region

- +
1< XlO < +1

(5-5)

- +
2 < X50 < +2

the greatest error is about 12.5% for the case A =3 and T = .75%.
For most of the region there is much closer agreement. In terms of
the actual pitch error & and error rate 6 of the satellite region
(5-5) is
-.5 <8< +.5
(5-6)
—‘/TK5 0 < éﬂ< +{ K0

where § is the angular frequency of the satellite orbit.
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FUEL COSTS CURVES AND HAMILTON-JACOBI THEORY

The fuel cost curves are intimately connected to the Hamilton-

Jacobi theory as seen in the discussion following theorem 3-1. The

slope gif of these curves is equal to the value of the adjoint
10
variable A, at the point (Xlo’x20> corresponding to the optimal

pseudoextremal for zeroing the state ) within time T. This

(xy 0%,

slope becomes vertical at the end points as the adjoint variables be-
come infinite and the fuel optimal solution degenerates intc the minimum

time solution.

Corners where the slope is discontinuous appear in both the linear
and nonlinear fuel cost curves. For the linear case one corner gppears

at the intersection of the horizontal line XEO = fixed constant and

the zero trajectories:

/.2 2
X = F A _(xlO+A) for -2A < %10 <0 (5-7)

% = - 2% (x. -p)°

50 for 0<x))<2A (5-8)

10" 10

which are the final semicircular arcs of the switching locus for the

Bushaw problem (Ref. [10]). For ,XEO] > A the corner disappears in

the linear solution curve.
More pronounced are the corners in the nonlinear fuel cost curves.

The first corner chr is at the intersection of the horizontal line

+
X, . = present constant and the zero trajectory I' « For those states

20

immediately to the right of x the optimal paths are either P-0-P

ler
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or P-0 pseudoextremals depending upon whether or not the intersection

occurred at a value Xop > n. The subscript cr denotes the value at

the corner. In terms of x50 then we have g P-0-P <rajectory for

X5 < - J2(cos n-1+Ax) (5-9)

and a P-0 trajectory for

Xpo > - y2(cos m-1+Ax) (5-10)

Tmmediately to the left of the corner (x.. < chr) the optimal pseudo-

10
extremals for time T = .75n are of type N-0-P.

The second corner is at the intersection of the given horizontal
line X = constant and the T-bang-coast isochrone where T here has

the value .75n. For points immediately to the left (XlO < x ) of

ler
this corner the optimal pseudoextremal is either a P-0-P or P-O path
depending upon whether the corner lies to the right of I;. The optimal
pseudoextremals for those x(t)  which have % > Xy.p BT P-O-N
trajectories.

Since such a corner represents a switching, theorem 3-1 does not
guarantee the existence of g solution to the canonical characteristic

differential equations. Inasmuch as the slope has a discontinuity of

the first kind at this corner we expect no solution to (5—19), i.e., to

oF
where F = -V(XlO’XQO’t) is the optimal fuel cost. However, we may
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still associate the slope immediately to the left or right of this
corner with the value of the adjoint kl at the corner for the
appropriate pseudoextremal. The slope to the right is given the value

of the adjoint Xl for a P-0-N pseudoextremal having a switching from

O to -A at the corner. From equation (3-4) along an O-arc

X
Ay = XE()"25+H‘B fx 1 _[2(cos o-cos xls)mgsl 5/gdur) (5-12)
: 1ls

where the subscript s now denotes values at the switching from the
zero trajectory.

It r) denote the coordinates of such a corner then the

(chr’XEC
Hamiltonian of such a P-0-N pseudoextremal is given by

(-l ___l_)
X2cr XES

Hy = (5-13)
ler
_/.X -[2(cos o-cos xls)+xgs]_5/2d6

. XlS

where we have made use of the fact that X2 = -1 in equation (5-12).

Since (Xls’XES) and (chr’_x2cr) belong to the same O-curve
x2 x2
2s _ _2cr
5o - cos X, =% cos Xy, (5-14)

+
But (Xls’XES) is a point on the zero trajectory T or

—i-cosxS=Ax -1 (5-15)

Combining (5-14) and (5-15) we obtain

2

X
X, =<—2—;"¥- - %, + 1)/A (5-16)

ler
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with which xes may be determined from (5—15). Since at a switch

‘ point

Hy = —)\,lx2+)\.2sin X, (5-17)

we obtain

+ .
i HB kgsln Xlr

chr = b’ (5-18)
2cr
The slope to the right of Xop is obtained by combining equation
(5-11) and (5-18) to get
H_+gin x
OF B ler
rx = -)\,l = p” (5'19)
10 2cr

where H, 1is given by (5-13).

In the case of a P-0O~P pseudoextremal being optimal for X0 < Xier

we make use of the fact that M, = +1 in equation (5-12) to obtain the

Hamiltonian

(5o -

HB - - 2Ccr 2s (5_20)

f lcr-[2(cos o-cos X )+x2 ]-5/2d0_
1s 28
“x
1s
and that
%E__ = -\ = ﬁ@:iii;fliﬁ (5-21)
XlO ler X2cr
. +
Should (chr’XECr) lie above I then for X1g < %Xy,.8P-0

pseudoextremal is optimal. 'In this case the Hamiltonian is zero and

the slope is obtained from (5-12) and (5-18)
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The adjoint value A

A sin x
_ _ _2cr ler _
‘hlcr - x (5-22)
2cr

is no longer at a switching but is obtained

from (5-12) with the Hamiltonian being zero.

from which

X201‘
x2cr = E__— (5—2§)
2s
gin x
- S -2
10 2¢cr

SYNTHESIS OF A SUBOPTIMAL CONTROL LAW

To implement the fuel-optimal, time-varying, feedback control law

would regquire such complex switching strategy as to be hardly feasible.

Neverthelegs, the optimal study does indicate how an efficient suboptimal

control law may be designed. Furthermore, the study provides a yard-

stick by which to gauge the effectiveness of any suboptimal proposal.

The simplified suboptimal control scheme eliminates all switching

loci found between the T-bang-coast isochrone and zero trajectory. The

only switching curves in the state plane for the suboptimal proposal

are the fixed zero trajectories and the time dependent T-bang-coast

isochrones.

Thus suboptimal paths have at most two switchings and are

either P-0-N (N-0-P) or P-0 (N-0) trajectories. The two strategies

are ildentical except for thoge states which at time-to-go T belong to

+
the region below l"Tc bounded by the T-bang-coast isocrhone and zero
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trajectory F+ (see Fig. 5-7). For this region a slight fuel penalty
is paid in return for a simplified switching strategy. Initial distur-
bances are also zeroed slightly faster than the prescribed mission
time T.

Because the suboptimal path is infact gn optimal path for a smaller
prescribed time T', the difference between the fuel consumptions of
the two laws increases as the prescribed time of mission T > T'  grows
longer. For our selected control bound of A = 3, the maximum penalty
suffered by the simplified control law is 3.6% which occurs at the
maximum gllowable time of mission T = wn. For most initial disturbances
(including other X, values) the penalty is less than 1%. In fact for
time of mission T = .757, the maximum fuel penalty for any initial
disturbance is down to 1% as shown in Fig. 5-8.

The suboptimal control scheme thus far proposed requires implemen-
tation of the T-bang-coast isochrones as the time-dependent second
switching locus. Thege switching curves are approximated by 2n-1
degree Hermit polynomials which match the coordinates and gslope of the
isochrone at n points. For T < .Tx the T-bang-coast isochrones
are closely approximated by fifth degree polynomials. (See Fig. 5-9.)
But for T > .Yx, seventh degree polynomials are needed fér an accurate
representation of the T-bang-coast isochrones. (8ee Fig. 5—10.) In
Figs. 5-9, and 5-10 the slopes and coordinates which determine the
matching Hermite polynomial are indicated. The slope at (0,0) was
not matched exactly but instead was adjusted to give better overall

agreement between the approximating polynomial and the isochrone. The
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approximation is seen to be so accurate that little additional fuel
penalties would result from this refinement of the previous suboptimal
proposal provided polynomials were stored for sufficient valués of T.
The greatest source of error arises in the approximation of the
continuous time-varying suboptimal feedback control law by a discrete
time-varying feedback law. If one samples the state (xl,xz) only
at those times for which a polynomial switching curve is stored, many
polynomiéls maykbe reqguired to reduce the fuel errors to an acceptable
level. The greatest error results when a state (Xl’xg) with %, >0
and X5 < 0 1lies just outside the second switching locus at time T
and thus continues with control wu = -A wuntil the next sampling time
at which it now is well within the u = 0 control region. In this
event a double penalty is paid because upon reaching the final switching
locus’ Ii, fuel must now be used to reduce the excessive velocity X,
which resulted from the late switching at the T-bang-coast isochrone.
For a sample time AT the maximum error is nearly 2AAT where A 1is
the control bound. In the most adverse circumstance for A =53 an
additional 1.88 units of fuel would be expended if ten polynomials
were stored and the state only sampled at these ten values of time.
Depending upon the state to be zeroed, anywhere from 20% to 80% excess
fuel would be consumed. This maximum error, while rarely encountered
for any given disturbance, could be proportionally reduced by storing
more polynomials and accordingly reduce the sample time AT or
preferably by incressing the sample rate without storing additional

polynomials.
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To take greater advantage of,increased sampling rates for a fixed
number of stored polynomisls, the following scheme is proposed. Those
sample points for which times a polynomial switching curve is stored are
called major sample points. Let Tl and T2 denote the two largest

timeg-to-go for which g polynomigl is stored such that

T, <Ty <T (5-25)

where T is the time remaining for zeroing the state =x(t). The inter-
val Tl—T2 is subdivided into n equal segments thereby creating n-1
“interior minor sampling points for which no switching polynomial is
stored.b The sampling points are ordered such that the O-th occurs

at the first major sampling time T. and the n-th at the second major

1
sampling point T2. The refined suboptimal control scheme ig then
illustrated in Fig. 5-11 for n = 10. At time-to-go T state (xl,xz)
1s assumed to be outside the Tl switching polynomial. (If it were
inside this polynomial the control would be zero and no further
switching would occur until reaching the zero trajectory.) Ietting
the integer k (0 < k < n) denote the sampling point we adopt the "

following control strategy:

i) If state x(t) has crossed the T, -switching

2

polynomial at sample point k,k switch control

to zero at sample k.

Otherwise
ii) If state x(t) has crossed the T, -switching
polynomial at sample point Xk where k < %
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switch control to zero at sample 2k~1 unless
overridden by control law (i) for any k < n.
In control law (ii) the time at which the Tl—switching polynomial
is erossed is used to help determine the time of next switching. The
effect of control law (ii) is to approximate intermediate switching
curves for those times-to-go at which no switching polynomial is available.
For k >n +the process is repeated with the T2 polynomial now
taking the role of the Tl polynomial and a T (T5 < T2) polyncmial

5

replacing the T, polynomiale. This refinement in the suboptimal

2
control realization will reduce the maximum error by nearly a factor
of n.

By merely increasing the sample rate a proportional reduction in

excess fuel expenditure has been achieved without increasing the number

of switching polynomials required.
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CONCLUSION

The problem of finding the minimum effort control for a particular
satellite attitude motion, where the pitch motion may be described by

the nonlinear differential equation
%(t) + sin x(t) = u(t) [ul <A, A>1

is the subject of this investigation. For reaction jet controllers,
the minimum effort criterion corresponds to minimum fuel expenditure.
In chapter I, after formulation of the problem to be studied, the

Maximum Principle of Pontryagin is used to obtain the necessary condi-

B e e

tions on the control wu(t) in order that the fesulting trajectory be

B S ‘___mww,,..m.r____——/"Mé’

fuel optimai:MMThe trajectories meeting such conditions are termed
P

’ pseudoextremals and are the candidates for the optimal paths. The

optimal control is found to be of type "bang-coast-bang' in which the
control is either zero or at a limiting value + A.

In chapter II,[the backwards time formulation is presented and

T C 3 E " B
possible control sequences enumerated. By restricting the time T to
M_ﬂ._‘m g

be always less than w1, +the minimum-time isochrone boundary of the

controllable region is found to be generated by a single switch, bang-
bang control sequence. Such a restriction seemg appropriate for it
corresponds to requiring the satellite to be reoriented within ’
nA/tgig radians of orbit or, for a satellite having inertial parameter
KB = —1/5, within half an orbit. The conéideration of an auxiliary

problem shows that optimal control sequences of type =+ A, 0, FA,.e..
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are limited in length to the sequences * A, O, FA whenever the
problem time T is less than ﬁ/2 + gresinh 1 =~ .T8x. An alternate
proof raising this lower bound .78x was not found. Nevertheless,
the method of proof and all computer examples indicate that the result
holds for times as large as n as well.

In chapter III,{the backwards time ad301nt variables A (T) and

A (T) are found as functions of the state varlables and 1n1t1al condi -

- Rt

SV ——

tions. A theorem of J.C. Dunn isg used to}relate the pseudoextremals of

the Maximum Principle to the characteristic canonical equations of
Hamilton-Jacobi. | Only those pseudoextremals with vanishing Hamiltonian

H may arrive at the origin in time t less than the prescribed time

f
T and still be fuel optimal for time T. By limiting the T-controllable

region to the cylinder

Sn < x, < Hn

1

the complete time varying fuel optimal control law is derived. The
control law is time varying because ﬁhe time remaining for zeroing the
state vector is an egsential parameter. The T-bang-coast isochrone and
the curve P; form the second switching locus.

The restriction -35w < Xy < 51 is imposed in order to limit a

control sequence of type +A,0,+A,0,... %o a seéuence of at most

three switchings. The third/switching locus/ii~§iiiiiEle ordering

the corregponding P-0-P +type pseudoextremsls in a special manner.
In chapter IV this restriction is removed and longer control

sequences of type HA,0,+A,0,... are allowed to occur. By exploiting
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the structure of such pseudoextremals established in chapter ITT, the
fourth, fifth, and a disjoined third switching loci are generated.
Although the resultant optimal control law is presented only for the
control bound A = 5, the same switching structure is present for any
bound A > 1. Only the shape and size of the switching surfaces is
changed. The value A = 3 1is selected as providing efficient zeroing
of anticipated disturbances without requiring unduly large controllers.
The solution is then applied to the actual earth pointing satellite
problem in which the pitch error is driven to some multiple of 2kn while
zeroing the error rate. Time varying indifference curves then sub-
divide the state space into periodic segments within which all gtates
are driven to the same end point. The chosen value A =3 1s suffi-
cient to guarantee that any pitch error can be co}rected within =«

radians of orbit provided the pitch error rate is sufficiently small.

In chapter V [the linear problem is compared to the nonlinear and

an indication given of the large region for which the linearized solu-

tion predicts the nonlinear system performance with good accuracy.

e et

efficient guboptimal design is proposed and evaluated.




APPENDIX A

DERTVATTON OF CONTROLLED SATELLITE ATTITUDE MOTION

THE TNERTTIAL TORQUE

For a rigid satellite B, the inertial torque about the mass center

B* ig well known (See Ref. [8].) From Fig. 1-1, El’ Eé, and 55 form

a right-handed set of orthogonal unit vectors which are parallel to the

principal axes I and I of inertia of B for B¥. The

17 Tos 3

inertial torgque of the satellite B about B* 1igs given by

T, = [w2w5(12—15)-w111]b1 +

+

[‘05‘“1( 15-11)-&212 ]32 + (A-1)

+

[o:.lmg(ll-lg)-m515]b5
where wi, i=1,2,3 are the measure numbers of the angular velocity
of B in inertial reference frame R for the basgis Bi’ i=1,2,3.
The dot (-) denotes differentiation with respect to time.
For the particular motion under consideration in which o remaing

5

normal to the orbital plane, the angular velocity w 1is given by

wl =0
w, =0 (A-2)

wB:Q+é

where  1s the angular velocity of reference frame A with respect to
inertial frame R and © is the pitch coordinate as defined in

Fig. 1-1. TFor the given motion of a satellite in circular orbit,  is

17k



a constant and the inertial torque TI simplifies to the expression

THE GRAVITATTONAL TORQUE

The gravitational‘torque is given by

T =—%><'fa (A-4)
R 1

(see Ref. [8]) where ;1 is a unit vector along the line of centers

of the earth and satellite, Té is the second moment of B relative
1

to B* for a4 ieee,

I. 0 0 (5,1-'61)
I =0 1. 0 (El-%'g) (A-5)

0o o0 I (al'bi)

where (;i-gﬁ) denotes the innerproduct of the vectors Ei and bj'
The universal gravitational constant is G; the mass of the earth is
M; and the distance between the mass centers of the earth and satellite
is R. For a circular orbit the gravitational and centrifugal forces

balance

5= &R | (A-6)
and relation (A-4) may be rewritten

= D— - _
TG——BQQ, X I (A-T7)

1 1
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But from Fig. 1-1

a, = b cos ® - bysin 0 (A-8)

Using (A-5), (A-T7), and (A-8) we obtain the expressions

— D — - -
= - - i + -
Ty, 30 alx(Ilcose b, - I,sinf b, Ob5) (A-9)
= —592(1 sin 6 cos 6 b,-I.sin 6 cos O b, ) (A-10)
1 32 3
= —592K I.sin 6 cos 6 b (A-11)
273 5

If the control torgue is denoted by

T, = Mo, (A-12)
the total active torque on the satellite EA is given by
— — o 2 —
= + = - i 5] 8+ -
T, = T*T, (-39 KEIlen cos M)b3 (A-13)

Since the velocity of the mass center of the satellite is indepen-

dent of © the generalized active force Fe satigfies

Fy = w P T, = b5- T, (A-14)

@
?ﬁl

and the generalized inertial force F¥ gatisfies

*=—l. = .—.:.—-.. -
. F¥ @ g Tp = by T; Ije (A-15)

But

FX¥ +F, =0 . (A-16)
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or with the aid of relations (A-13), (A-14%), and (A-15)

6 + 592K I.s8in 6 cos @ = M (A-17)

I 513

and the equation (1-9) for the pitch motion is verified.
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APPENDTX B

TIME OPTIMAL POLICY FOR THE REDUCED AUXILIARY
PROBLEM OF THEOREM 2-3

Consider the system
iu = %, (B-1)
k + o, (B-2)
where the control E satisfies the constraint
[e) <1 vt (B-3)

The Hamiltonian is

B = %37 - wps - P (B-4)
and corresponding adjoint differential equations are
s o= - SH 7 .
Ph = axu = UP5 (B 5)
. O _
Py = - S, = (B-6)

Our objective is to drive the phase point (xh,XB) from the initial
position (1, free) to the fixed final state (-1,0) in minimum time.
The Hamiltonian H is maximized by the control law

-1 xup5 >0

=i
1

+1 X0, < 0 ‘ (B-7)

Indeterminate thj =0
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We begin by eliminating the possibility of a singular control
genergting a pseudoextremsl. Should thﬁ = 0 over a finite time

interval (tl,tg) then either

i

i) Ps 0 on (tl,tg) (B-8)

i

ii) x, =0 on (tl,tg) (B-9)

Taking first case (1)
ps = O on (tl,tg) > p, =0 on (tl,tg) (B-10)

Because our adjoint equations are linegr and homogeneous, thée only
continuous solution valid for all t and satisfying equation (B-10)
on (tl,tg) is the trivial solution p), = Py = 0O ¥t. Such a
trivial solution does not satisfy the necessary conditions of Pontryagin's
theorem (Ref. [2]).

Analogous reasoning for case (ii) yields only the trivial solution
X, = x§ =0 Vt, a solution which fails to meet the requirements of our
migsion. Thus without loss of generality, we may limit the control to

the vglues +1 and -1 seeking the time optimal solution.

The boundary conditions for this problem are

xu(O) = 1 Xh(tf) = -1
(B-11)

‘ .
o

x5(0) free x5(tf) =

and the transversality condition is
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p5(0)0= 0 (B-12)

Switchings occur only at zeros of p5(t) and xu(t) where p5 and

x), are governed by the differential equations

Pz(t) +up,(t) =0 (B-13)
3 3
. +~ - -
Xq(t) uxn(t) 0 (B-14)
and Z is either 1 or -1. Letting p5 1 denote the solution to
5-

(B-13) for E initially = -1 and p5 +1 denote the solution for E

2
initially = +1 +the only solutions to equation (B-13) meeting require-
ment (B-12) valid in some neighborhood of t = O wup to the time of the

first switching tS are

il

Ps .y C,sinh t te[O,tS] (B-15)

Py 41 = Cosin t te[O,tS] (B-16)

where Cl and 02 are constants of integration. These solutions

remain pseudoextremals until either

|
O
C+
V
@

1) x,(t,) = (B-17)

or

[
O
ot
\%
O

11) p5(ts) = (B-18)

at which time a switching occurs. From (B-13) and (B-14) we see that
both pj(t) and xu(t) solutions consist of alternating trignometric

and hyperbolic arcs. We first consider all possible solutions
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corresponding to E being initiglly +1 which could yield an optimal

time of solution less than =n. After completing this task, we then

consider those solutions for which u 1is initially -1. Now ps +l(ts):()
2

again for the first time at

t = (B-19)
Therefore assuming
xu(ts) =0 (B-20)
inla time t, such that
t, < (B-21)

The control remains constant (+1) wuntil
xu(t) =0 (B-22)

at which time the first switching occurs. Up to the first switching tS

x4,+l(t) = cos t + Bysin t te[o,ts] (B-23)
at which time a switching occurs and the solutions p5)+l(t) and,
X4,+l(t) are extended by

p5’+1(t) = C,sin tScosh(t—tS)+Clcos tssinh(t—ts) (B-2k)
g4,+l(t) = D;sinh(t-t) te[ts,tr] (B-25)

to the interval [ts,tr] where tr denotes the time of the second

switching, i.e., the smallest tr>'tS such that either
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P54 (t.) = 0 (B-26)

or

X4,+l(tr) =0 (B-27)

But from (B-25) x), +l(t) never again vanishes. Should a second
2
switching occur, it could only have been induced by a zero of p5 +l(t)
2

in which case
sin t_cosh(t_-t ) +cos t sinh(t -t ) =0 (B-28)
S r S S r S

Since cosh(tr—ts) and sinh(tr—tg) are both positive, equation

(B-27) implies that

hie
t, >3 (B-29)
But from equations (B-22) and (B-23)
+ i = -
cos ts 3181n ts 0 (B-30)
Recalling also that ts <n we find that
B, >0 (B-31)

and that xh’ﬂ(t) behaves as shown in Fig. B-1 up to the first
switching. But such a solution can not be time optimal because clearly
the solution beginning at point B of Fig. B-1 would use less time. We
conclude that no solution beginning with control initially +1 and
having two or more switchings can meet boundary conditions (B-11) and

be time optimal, if the minimum time is to be less than x. Inasmuch
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as xu(t) must be zero for some te(O,tf) in order to satisfy (B-11),
there must be at least one switching. A path containing but one
switching is the only candidate remaining for which the optimal time
of solution might be less than =. Differentiating equation (B-25) we

get

x5,+l(t) = ih,+1(t) = Djcosh(t-t_ ) t >t (B-32)

which is never zero. We can not meet the termingl boundary condition
xi(tf) = 0 with a path having only one switching which begins with the
control initially +1. Hence there is no optimal path having control
initiglly +1, if the minimum time for solution is indeed less than =n.
We now return to those solutions beginning with control initially -1
in anticipation of finding just such a solution.

Now from the expression (B-15) for p5,_l(t) valid up to the first
switching, we see that the first switching can not be induced by a

zero of p5 _l(t). Up to the first switching
2

xu’_l(t) = Ajcosh t + B,sinh t te[O,tS] (B-33)

2

Applying the initial boundary condition of (B-11)
xh,_l(t) = cosh t + B,sinh t te[o,ts] (B-34)

To meet the boundary conditions Xh(t) must necessarily pass through

zero gt which time ts the first switching>occurs.

Xh,-l(ts) = cosh tS + B_sinh t, = 0 (B-35)

2
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from which B2 may be evaluated

cosh ©
s

B, = T ThmE, (3-56)

Extending the solution for x (t) Dbeyond the first switching we
)‘l',"l

obtain the expressions
xu’_l(t) = D251n(t—ts) te[ts,tr] (B-37)

x5’_l(t) = ih,—1<t) = Dgcos(t—ts) te[ts,tr] (B-38)

valid up to the time of second switching tr' But from expression

B(-34) and (B-36)

cosh t

s
3 + C ———
sinh ts ( g ts) cosh ts

N

“
1

bt
—~—

ot
~—
1]

1 (B-39)
i sinh(tsi

from which we may evaluate the constant D. of equation (B-38). There-

2

fore up to the second switching, x (t) is given by
b, -1

sin(t—ts)
X)-I-, _l(t) = - —S—l'r'l?—t;— t€[ts:tr] (B—LPO)
and
) cos(t—ts)
X5,-1(t) = xu’_l(t) = - e telt_,t ] (B-41)

Such a solution meets the terminal boundary conditions (B-11) in time

n/2 + arc sinh 1.
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Now

Xﬁ, '.I(tfg =0 :Q@sg(tp f-—%tis;) = B ,(B.."LLQ)

which first ogeurs for

te =t = /2 (B~43)

sin(t -t )

5y, alte) = 1 & - = 1 (5-1)

Substituting for tp from (B-43) imto eguation {B~44) we find
sinh t_ =1 (B-45)

which together with eguation {B-43) yields

. = gresink 1 + n/2 = .78x (B-L6)

b

as asserted. If we now demonstrate that any solution X5 1
2

more thap ope switehing reguires a time of solution greagter than w,

(t) having

then the solution x§,»1{t) with one switching must be optimal, and
the minimum time is infaet #/2 + arcsinh 1.

In order that the second switching occur in time t_ < «, it must
be induced by a zero of pﬁ,—l(t)' A second switching induced by a
zero of xh,el(t) vould oceur at time t =t +x from expression
(B-37), The solution pﬁ’,l(t) as given by (B-15) may be extended to

the interval [tsgtr] by

(t) =¢C cosh t_sin(t-t_) (B-17)

_sinh tscos(t-ts)-kcl

pi:"l l

At the second switching then
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sinh t cos(t_-t )+ cosh t sin(t_-t ) = O (B-48)
S r s S r s
which can only occur for
t-t, > /2 (B-49)

We now demonstrate that such a two switching solution can not meet the
terminal boundary conditions (B-11) within time =n. Extending the
solutions for X, _l(t) and x5 l(t) as given by equations (B—BY)

] 3~

and (B-38) on to the interval [tr,tf] we obtain

= 3 - - +
XM,—l(t) D251n(tr ts)cosh(t tr)

(B-50)
+ - i -
Dgcos(tr ts)31nh(t tr)
= + 1 - i - -+
XB’_l(t) D231n(tr ts)51nh(t tr)
) + Dgcos(tr—ts)cosh(t—tr) (B-51)
In order that
XB’_l(tf) =0 (B-52)
we must require rearranging (B-51) that
- -t )+ si - ; - = -
cosh(tf tr)cos(tr ts) 51nh(tf tr)Sln(tr ts) 0 (B-53)

The condition for the second switching (B-48) and equation (B-53) can
simultaneously hold only if the determinate of the coefficients of

cos(tr-ts) and Sin(tr_ts) vanishes; namely,
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sinh t881nh(tf—tr)- cosh tscosh(tf—tr) =0 (B~54)

or
cosh[(tf-tr)-tS} =0 (B-55)

which is impossible. Therefore a solution XB,—l(t) with two switchings
within time = cannot satisfy the boundary conditions (B-11).

We now demonstratée that in order for three switchings to occur on
an XB,—l(t) gsolution, the time of the third switching tq must be
greater than =n. If this be true, then the solution given by (B-40)
must be the minimum time solution becguse we finally have demonstrated
that any other solution satisfying the maximum principle and meeting
our boundary conditions (B-1l) requires more time.

We already have ssen that the second switching must have been

induced by a zero of p5 _l(t) in order that tr be less than .
2

Therefore up to the third switching at time tq we have

p5’_l(t) = E sinh(t-t ) te{tr,tq] (B-56)

an expression which is never again zero. The third switching must be

induced by a zero of xh,—l(t)'

Xh,-l(tq) =0 (B-57)

But at the first switching

1
(@}

%y, () (B-58)
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therefore for some tm guch that
< -
by <ty <ty (B-59)
the derivative of X), _l(t) must vanish.
J
XM,-l(tm> = XB,—l(tm) = 0 (B-60)

But requirement (B-60) is just equation (B-53) with t_. replaced by

f

tm. Reconstructing the same argument as before we obtain
cosh[tm—tr—ts] =0 (B-61)

which is impossible. Hence three switchings must regquire more time
than =n. The only solution satisfying the maximum principle and the
boundary conditions (B-11) in time less than = 1is that xu’_l(t)
solution having one switching. The minimum time for the problem must

be n/2 + arcsinh 1.

Fig. B-1. Solution BC Requires Less Time Than Solution ABC.

188



APPENDIX C

SOLUTION FOR THE ADJOINT VARIABLES

We now week to integrate the gdjoint differential equations along

a state trajectory in the backward time dirvection, i:e., integrate

n . 3 \ -
he(T) + cos yl(T) XE(T) =0 (c-1)
along the path
y:tL = —ye (C—2)
1 —_ s - -
yp = sin y,-u (c-3)

where u is +A, -A, or O. We note that

Do To Wy P2 (c-4)
dr T dy, @t iy, 72
dgk dk2 dx,
2 2. 2,2 .
B = _E y2 + d.—_ [U."Sln .Vl] (C'5)
ar ] I1
d?Xe .
Substituting -3 into (C<1), we get
daT
5 dhg dk2
v, =5 ¢ [u-sin yl] oty Myeos y, = 0 (c-6)
ayy I

If we consider only those trajectories which do not cross the ¥y

axis (y2 never zero) then
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dA

2 a

2 2 2 2
—= 4 —ad —= 4 2 - —< +
Yo — 5 2[u-sin yl] 3y [sin ¥, ul & y
dyl 1 1
da
d 2 2
— _ 3 - =
&y, lys 3y, Mpsin ypu Al =0

Hence, integrating we get

or

o1
2

Io

thus

Integrating

then

and

o

— 2 - -
Yo dyl X251n v uA c

2 1

dr, . (sin yl—u)kg ) dhy, M, 9y,
dy 2 dy 2 4t
! I Loy
oo W 4 b
YZ ¥, vy 2 dy, dyy ¥,

180

2

cos y, =

(c-7)

(c-8)

(c-9)

(c-10)

(c-11)

(c-12)



c Y
= P & .__l.. + # - + 1 dg
My Xg g (sin ¥, u) c tey B

3
2 Vi, Yolo)
From the initial condition 7T = TS
AN
) = A =
XE(TS) 2s 1
we get
_ kES 1
¢y =T =5
Y25 Jos
and
°1
A, = - == + (gin y, -u)c
1ls Yoq 1s 2
or

ey = Mg Tpg *(sin yyulhy, = Hy-lul

Therefore (C-13) becomes

e oy 71 e ]
. yg[ygs (| x)fl S

s

or along an O-arc having last switching at (yls’y2s)
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APPENDIX D

SOLUTION FOR THE ADJOINT VARIABLES WHEN ETITHER
THE INITTAL OR FINAL POINT IS ON THE vy AXTS

INTTIAL POINT ON THE ¥y AXTS

We wish to integrate the differential equation

2 an

2 da 2
—— - —_— = -
Y =3 + (u-sin yl) e chos ¥ 0 (D-1)
dyl 1

along a P,0, or N-arc starting from the singular point M(ylm,o).
Our previous expression for the adjoint variables as derived in

Appendix C; namely (C-18), is invalid for this point M(ylm,o). The

A
term =28 becomes infinite for Yog -0 as does the term

yés

J
./‘ 1 %G because of the integrand. Then repeating the development
v, Yo(o)

of Almuzara's Appendix B Ref. [2], we transform the integral in such a
way that its principle part cancels the corresponding principle part of

kgs/y?s. As we proceed to the limit we obtain a finite expression for

Xg.
Near the singular point M(xlm,O) we have the following series
expansions:
. . 2
sin y; = sin y, +cos ylm(yl—ylm)-fo[(yl—ylm) ] (D-2)
2
22 - (usin 3, )y, vy) + oLl y, )7 (0-5)
P AT AR AR AT LA A R AT
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v, = te(u-sin v, )y, -y, )1 24 ol (v, -y, )P/ ? (p-k)

L - slelwsin vy )y, ) P ol (9,2 (0-5)
L - +(o(u-sin 3, )y, -y )}_5/2
5 = 1m’ Y1V 1m
Yo
+ 3cos ylm{E-E(u—sin ylm)-S(yl-ylm)—l}l/2+o((yl—ylm)l/g]

(D-6)

where the plus sign is to be used for arcs above the ¥y axis and
minus sign for arcs below the ¥y axis. At this point we will need
to distinguish between P-arcs and N or O arcs in order to factor
such expressions as in (D-4) in a meaningful way.

For a P-arc

I

{{u-sin ylm)(yl_ylm)}l/e (u-sin ylm)l/g(yl'ylm)l/2

whereas for an N or O-arc

)}1/2 )1/2

{(u-sin ylm) v,y (sin -ym—u)l/g(ym-y]L

in order that we always deal with real numbers. Then assuming we are
integrating along an N or O-arc in which case the plus sign is to be

used
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fyl do =fY1{ 1 1 ]dc+
I1s 3;2(0-> Vs VZ(U) {2(u-sin ym)(o-ym)}5/2

+ {2(sin ¥y -u)}—B/2 1 —-—7— (D-7)
- Y10 o)/ 2
I 1 1 ]
= - do +
'/;;ls [;}’Z(U) {2(u-sin ylm)(cr-ylm)}f’/g
sin -u —5/2
+ - (ylm ) [ 1 1/2 1/ ]
/2 (yy,777) (¥ yls)
(D-8)
Also
i—s- = {2(u-sin ym)(yls-ylm)}—l/zm[(yls-ylm)l/2] (D-9)
Substituting (D-8) and (D-9) into (C-18), we get
My(T) = ygg [2(u-sin y, )y -y)] l/2+o[(yls-;y'lm)l/g] +

Y
+ (H -:un/l[ L 1 }dg
: Vg yg(d) [2(u-sin y,_)( )17/ 2

oY
(HB‘,U’ )

/E(Sin ylm_u)5/2 [(ylm_yl)]je ( _ylS)I[Q]

+

or

194



)”Q(T) = yQ%[E(u—sin ylm)i(yls*ylm)]'1/2[—7»25(511& Yy ) +

+ Hy=[ull + 0[(yls-ylm)l/2] +

+ (HB“IUI) yl[ 51 - L 5/2] do
vy Lyp(e)  [2(u-sin y, )(o-y, )]
( -
ot — '3 [ul) . L ! (D-11)
32 (g, -y 2
J2(sin ylm~u) Iim ™1
But from (D-2) we have
sin y, = sin y, -cos ylm(yls-ylm)+o[(yls-ym)2] (p-12)

The expression —)\.25(51n ylm-u)’+ HB-lul becomes

-kgs(sin yls-u)+HB-’ul—XEScos ylm(yls-ylm)+0[(yls-ylm)gl (D-13)

2

1

)12

-)»ls[2(u-sin ylm)(yl-ylm +of (yls -ylm)] (D-15)

Substituting (D-15) into (D-11) we get
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J 1
+ (H -l ul) l[ -
Yig yg(ﬁ) [2(u-sin ylm)(c-ylm
. (HB"U-]) . 1
/2 (v, y)Y?
J/2(sin ylm-u)5 Yim 1

)15/2] “

(D-16)

If we now allow the initial point S to approach M we obtain in

the limit

My (g5-lul)

[2(u-sin ylm)B(yl-ylm

SECh

s tagehal) [ -
E Yim sé(o) [2(u-sin y, )(o-y,

where now the integral is finite for any finite yy-

FINAL POINT ON THE ¥y AXTS

Looking at our expression for Xg(T)

A y
M (7) = [—22 + (mg-lul) [T 52 ]

we seek the limit as Yy 2 Yn of

-y ¥
Lim y L899 . rim 2
¥,y v, yolo)  y.oy 1 _ao |t
17 Y1 15 J2 179 1m o
o
v, v, (o)

Applying L'Hospital rule
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J ) 'ye

; ilr}rrl ’ y1 dc.r ] = Lim . 1,, SO (D-QO)
~ V=] ;
=[] e B
. yi(o) y
yls 2 2 5
y.'L do
3 2()
WUie Iolf
: Y. 2
= (sin yl-u)z Lim [y2 ! gdg ]z (D-21)
Y17 V1 AP/

Prom (D-19) and (D-21)

. v :
. 1 4o 1
Lim y2f 5= . (D-22)
Therefore _
_ iyl ul
A R (-23)
Y12 Vp sin y,-u :
Yo 2 0

Now for Io 74 0

(HB-’U') + XE(T)(sin yl-u)
—, :

xl(w) (D-2k)

or using (D-18)

]

—,ul A
A (7) -HB ~— + (sin :srl-u)[--g—s-+(HB-lu.l)-fyl g ]

2 2s y y 9]
1s 2( )
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Now we seek the wvalue of Xl(T) at the singular point M. Near

M(ylm,O) we have

%; = -[2(u-sin ylm)(yl-ylm)]-1/2+O[(yl“ylm)l/2] (D 26)
L - e(ussin v, )05y, 172 -
3 u-sin y, My =vq,
I2
) -5/2 1/2 '
- 3cos ylm[2(u~51n ylm)] +o[(yl-ylm) ] (D-27)

If we again assume we are on an N or O-arc so as to Tactor square

roots properly then

/‘Yl go =/3’1[ 51 N 1 5/2] i -
Vi Y500 Jy  Lyg(o)  [2(u-sin y  )(o=y, )]

SR RA R — (p-28)

- [2(sin Y1
yls

=/yl[ 1 " 1 ]do__
y yZ(U) [2(u-sin ylm)(ozylm)]B/2

1s
-3/2
|

(sin ylm—u)

Ve

1 1

)1/2 )

1/2]

(y1,77, (Y1 ¥1s)

(D-29)

Substituting (D-26) and (D-29) into (D-25) we get
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() = (g-lul) 2(u-sin 3, )Gy, v, )17 Peoly

7\.
* (otn yma) |25 0 (5 Iu!)/ [
1s yB(U)

1

+ do +
[2(u-sin ylm)(o‘-ylm)]B/E]

HB"'H’) 1 1

YA
\/—(SJ.n Yim —u)5/2 (y yl)
Collecting and rearranging terms we obtain

A (7) = (sin y -u)g‘igi + (Hy- [ul) j( [-—l—— +
1 Y1q > (o)

+ 1 ]dd%+
[2(u-sin ylm)(O*ylm)]5/2

+

(7_-lul)
k- Ve o[(yl_ylm)l/g]
[2(sin ylm-u)(ylm-yls)]

as ¥y, d’ylm then
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A ) 28
e = 5 = ] - —_—
Lim Xg(yl) (sin y u)g
31 I1m 2s

y
b (5 -lul) lm[ L, L ]dg
E _/; VZ(O) [2(u-sin ylm)(c—ylm)]5/2 s

1s’

(Hy-lul)

[2(sin ylm-u)(ylm-yls

+

)]1/2 (D-32)

where as before the integral is now finite. If we now consider first
the point M(ylm,o) as the end point of an arc and then use that
value of le given by (D-32) as the new initial condition on Xl(T)
(as new kls) for continuing the integration across the yl axis

into the upper half of plane via (D-17), we obtain

A y
M (7) = =22 + -lﬂ)/m[ L.
° . y2s HB yls yg(c)

; 1 ]dg' ;
[2(u-sin ylm)(c-ylm)]5/2 g
. (8y-lul) (85-ul)
+ +
[2(sin ylm—u)a(ylm~yls)]l[2 [2(u-sin ylm)B(yl'ylm)]l/e

y
- _,u,)/m[-l ; 1 ]dg
g ¥y yg(ff) [2(u-sin ym)(U-ym)]5/2

(D-33)
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The expression (D-34) is valid for XQ(T) for y, > 0. If the

initial point S(yls,ygs) is a P-0 corner, i.e.,

We obtain (3-23) after noting that

2 2
= + -
ye(o) Vg 2(cos o-cos yls)

along the O-arc through the point S.
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APPENDIX E
COMPLETTON OF PROOF OF LEMMA 3-L4
Herein we will demonstrate that given (yls,ygs) and (ylr,ygr)

as first and second switch points of s P-0-P... pseudoextremal, the

term F(ylr> satisfies

F(ylr) > 0 for y. > Vg (E-1)

1r

from (3-117) we have

A v, A (o)y. (o)
F(ylr) = - —%E - 2A.jf ir _;__5_2___ do (E-2)
Y2S ylS }’2( G) ’

where hls is that value of the adjoint Xl at the first switching

which produces a second switching at (ylr’yEr)' For a particular

O-arc hls becomes a function of iy alone. Along such an O-arc

Iog and yg(d) do not depend upon Vi but Xl(U) is actually

Yy dependent

1 (0) = A (0,y,) (& 3)

for xl( o) is that value of the adjoint A, at ¥y, = 0 which

1
produces a switching at Vip Our notaticn in (E-2) is thereby
Justified.

We first note that for Yip =Y the second switching point R

1s

cocincides with the first switching point S. This limiting case
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corresponds to the adjoint A, being tangent to the line X2(T) = 1

2
from above. At the tangent point Vi the derivative }"ls vanishes.

Hence

Py, (E-b)

)'ylrzylsz
If now the variation O®F due to a positive variation Sylr (corres-
ponding to moving the second switch point to the right an amount

8y,, along the fixed O-arc) is always positive, then relation (E-1)
will be verified once we note that every term of (E-2) is of continuous

variation. From (E-2) we have

5F = - 6)\'ls _ gAklr _op r 6X1(U)y2
- 2 N 5

Iog Yor I1s Io

do (E-5)

where 6%1(6) is the change in A, at y; = 0 necessary to move the

1
point of second switching by Oy, . With 6x2(c) likewise defined we

have
(A #Bh))" = = cos y, (A o)) (E-6)
or since
Xi(T) = -cos ylxg(T) (E-T)
the relation
6Xi = -coS ylﬁkg (E-8)

holds exactly. In like manner we have

BLL = BAy (E-9)
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BHy = BM,sin ¥y - By, (E-10)

where SHB is the change in the Hamiltonian producing a change aylr
in the second switch point. Noting that for Sylr >0 (via an argu-

ment similar to that in the proof of theorem 5—5)

-—5>0 (E-11)
yés
It will be sufficient to show that

A ¥, O (0)y, (o)
S [ S A (5-12)
Yop Vg yp(0)
in order to guarantee that ©&F be positive. Using (E-10) this is

equivalent to

My +fylr o+ Opl9)sin , (0) do < 0 (E-13)
v Jy (o)
2r 1s 2
Now
fyll" Mdg_fylr ) _@(_L_)dg (E-14)
- 2 4o 3
yls yg yls 5y2(o)
I Sh 1r - fylr 1 ml(G) ao (E-15)
Io T1s "Y1 Y _

where the last equality is obtained by integration by parts. From

(E-10), (E-1%), and (E-15) then
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Bh.y_+D 8

fylr MY, ol 4o = X Mo fylr oMY,
———5-——— g = —5— + e

I1s I Jor Y1 Y2

or

... 8 (0)y,(o) B, ¥
2'/'lr 1 M2 4o = 2r_56HBflr do

> P
I1sg y2('0-) 3;21* T1s WE( o)
But from Appendix C we have along an O-arc
>V23+8)V 28
Bhy Ay = ¥ | =+ (HB+6HB)./f ]
ls yE(G)

from which

oM 34
25 1 do
= + 8
6)\'2 yQ[y HB ,/ b} ]

2s ¥

and since O\ = Q0
28

Y
1lr do
= ® e
6)“21' 'y2r HB f 5(0_)
Y15 Y2

Since 6)“2r < 0 we must have

8HB<O

Substituting for 6)“21;- into (E-17) we obtain
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5 3
Y1s VA Vo Vg ¥o(0)
y ' y
_f lr _do | _ EBHB_/. lr _ 4o (B-22)
() ()
Yis o Y15 Yo
or
v B\, (0)sin y.(0)
2/‘ lr 2 - L 4o
Yis y,(0)
y v
1 1r do 1r do
& A R i) B
Yor J15 2 Y15 Jo
Because
2
Yop 2 ¥5(0) (E-2k)

the bracketed term of (E-23) is positive. This together with (E-21)

means

fylr ng( o)sin yl( o)

5( ) do < 0 (E-25)
yolo

yls

We have just shown one term of (E-13) to be negative. It will

suffice to show

do < 0 : (E-26)

Xlr . ylr _ 6HB
I 5
Yor Vs Yo(0)

as well. From (3-83) we have
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y2r yQS

(E-27)
do
yls 73(0)
from which
i 1(Slny1r)fy1r ac 1|1 x
dHB y2 Yor ¥y y5(0) y5 ‘y2r Yos
2r 1s 2 2r
8HB=dy = " (E-28)
1r 1r 4o 2
T1s yg(ff)
or using (E-27)
(sin y, -H)
1r
BH, = (E-29)
e
22V1e (o)
2
Since at the switching R
= - -+ i -
HB xlry2r sin ylr (£-50)
(E-29) may be rewritten
A
1lr
& 2 fylr do '
2r 5
Ve Yo(0)

Our goal of verifying that (E-26) is infact negative is thereby reduced

to showing
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y2 fylr do
3\ 2r

5
¥.. ¥o(0)
—i—r 1 - ls ‘=2 <0 (E-32)
or fylr do
v, ¥00)

Since Xlr > 0 for an O-P corner we must verify that

2 /‘ J1r  do
y2r

5
¥, Yo(0)
2
1< - (E-35)
fylr 4o
5
Ve Yo(0)
The fact that
2 2
Yop > Y5(0) (E-34)
< o< .
for yls ylr completes the proof
If we first note that on the interval [31,211], cos 0 is
monotonicly increasing then yg(O‘) also increases monotonicly on
the same interval i
¥ >32(0) n<o<y. <on (E-35)
2r 2 - 1r -
since
2
ygr(G) =cos 0+ K (E-36)

Likewise for O < Vis <o<mx
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2 2
>
Yog > ¥2(0)
But we must require that

5 5
Yop = Vog

in order that the backward time Hamiltonian HB be nonpositive.

relation (E-27). Therefore
2 2 2
Yor 2 Yag > ¥5(0)

for all o less than = as well and (E-34) is verified.
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